The Cauchy-Riemann Equations

Theorem: A necessary (but not sufficient) condition for a function

f(z) = ulx,y) + iv(x,y) to be analytic (i.e. have a derivative) in a domain D
is that Uy, Uy, Vy, Uy exist and satisfy the Cauchy-Riemann equations:

Uy = Vy, Uy = —y
at each pointin D.
Note: If f(2) is analytic at Z, then we can calculate f'(z,) by:

f'(20) = ux(xg,y0) + i vx(x0,¥0)

Proof:

Let f(z) = ulx,y) + iv(x, y).
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This limit must exist, and be the same, along every path approaching z.

In particular it must work for:
Pathl: Yy =Yg, s0Z — Zg = X — Xg = Ax

Path2: X = X, soZ — zy = (y — yo)i = iAy.



Along Path 1 we have:

, e (ueeynHivegy)) = (u(xo,y ) +iv(xo.y0))
f'(zo) = 9313?0 >

= Uy (X9, Vo) + ivy (%0, Vo).

Along Path 2 we have:

. o (u(x,y)+iv(x,y))—(u(xo,y0)+iv(x0,y0))
f'(z) = ylggo o

= —iuy(xo»YO) + Uy(xo:YO)-

Since the limits have to be equal along both paths we have:

ux(xO» yO) + ivx(XO: yO) = _iuy(xOI yO) + Uy(xo, yO)

Notice that this theorem says that you can’t necessarily create a differentiable
complex function f(z) = u(x,y) + iv(x,y) by choosing any real valued
functions u(x, y) and v(x, y) whose partial derivatives exist. It’s not enough
that the partial derivatives of u(x, y) and v(x, y) exist, they must also satisfy
the Cauchy-Riemann equations: U, = V), U, = —V, justto have a chance
for f(Z) to be analytic (even if the C-R equations are satisfied, that doesn’t
guarantee that the derivative of f(z) exists).



Ex. Let f(2) = ulx,y) +iv(x,y) ifz+0, andf(z) =0if z=0,

where

x3_y3 x3+y3
ulx,y) =55 vloy) =575 w00 =0, v(0,0) =0.

Show that the C-R equations are satisfied at (0,0), but f'(0) doesn’t exist.
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Thus we have: u,(0,0) = vy(0,0) = 1; uy(0,0) = —1,(0,0) = —1.

So u(x,y) and v(x, y) satisfy the C-R equations.

Now let’s calculate lim [~/ (0)

by 2 paths to show that f'(0) doesn’t exist.
z—»0 z—0

Path 1: let z approach 0 along the x axis (i.e. y = 0).

Path 2: let Z approach 0 along the liney = x
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So f'(0) doesn’t exist even though 1 (x, y) and v(x, y) satisfy the C-R equations.

The “problem” is that U, Uy, Vy, Uy are not continuous at (0,0).

Theorem: Let f(z) = u(x,y) + iv(x,y). A necessary and sufficient condition
for f to be analytic in a domain D is that Uy, Uy, Uy, Uy exist, are continuous,

and satisfy the Cauchy-Riemann equations, U, = Vy, Uy = —Uy.

Ex. Prove that the only complex analytic functions whose values (i.e. its range)
are solely real numbers are constants.

If f(z) = u(x,y) + iv(x,y) hasonlyreal values then f(z) = u(x,y),
sincev(x,y) = 0.

If f(Z) is analytic then U and v must satisfy the C-R equations.
Butv(x,y) =0 = v, = 0andv), = 0atall points (x, y).
So the C-R equations then imply:

Uy =vy, =0 and uy, = —v, =0.

= u(x, y) =constant since the partial derivatives of u are 0 everywhere.



Ex. Which of the following functions are analytic everywhere on C (i.e. are entire
functions)?

o 0o T o

. f(2) =z

. flz) =z2
f(2) = |z|?

. f(z) =e*

We already know f(Z) = z%is analytic because we know how to take its
derivative and we know that that exists everywhere. However, to check via
our theorem:

f(2) =2z* = (x+iy)* = (x* —y?) +i(2xy).

so  u(x,y) =x*—-y? v(x,y) = 2xy
Uy = 2X, Uy = —2Y, Uy =2y, vy = 2x (all continuous).
Thus we have: Uy =Vy = 2X Uy = —Vy = —2Y,

so f(z) = z? is analytic everywhere.

f(2) =7% = (x —iy)? = x? — y? = 2ixy.
so  u(x,y)=x?%—y? v(x,y) = —2xy
u, = 2Xx, Uy = -2y, UV, = —2Y, vy = —2X.
Uy = Vy = 2X = —2X; Uy = —VUy = —2y = 2.

But the only point that satisfies both C-R equations is (0,0). However, a
function can't be analytic only at a single point (to be analytic at a point it
must be analytic in a neighborhood of that point). Thus this function is not
analytic anywhere.



c. f(2)=|z?=zz=(x+iy)(x—iy) =x?+y>

So u(x, y) =x%+ yz, v(x, y) = (0 and we already saw that the only
analytic function whose values are all real is a constant function. Thus

f(2) = |z|? is not analytic anywhere.

d. f(2) = e% = e**Y) = e¥(cosy + isiny)

u(x,y) = e*cosy, v(x,y) = e*siny
— pX — X o7 — pX i — pX
u, = e*cosy, u, =—e*siny, v, = e*siny, v, =e*cosy

So all partials are continuous.

Uy =y, =e*cosy, U, =—v, =—e*siny.

Thus f(Z) = e?Z is analytic everywhere on C.

Def. A point z; is called an isolated singularity of f(2) if f (Z) is not analytic at
Z but is analytic in a deleted neighborhood of Z; (a deleted neighborhood
of Zy is a neighborhood of z; with the point z; excluded).
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Ex. f(Z) =77

has an isolated singularity at z = i.

We know from our derivative formulas that f'(Z) existsfor z # . Atz = [ the
function is not defined so it can’t have a derivative at z = 1.



Laplace’s Equation

Laplace’s (differential) equation comes up frequently in physics (2 dimensional

ideal fluid flow, steady state heat conduction, electrostatics, etc.). In 2
dimensions the equation is:

0%u(x, 2%u(x,
y) , 9Tuxy) _
0x2 0y?2

or  Uee(x,y) + uy,(x,y) =0.
This is sometimes writtenas: V2u =0 or Au = 0.

Def. Any real valued function u(x, y) that is a solution to Laplace’s equation and
has continuous second partial derivatives is called harmonic.

Theorem: Let f(z) = u(x,y) + iv(x,y) be an analytic functionin D € C,
then u(x, y) and v(x, y) are harmonicin D.

Proof: Since f(z) isanalyticin D, u(x,y) and v(x, y) must satisfy the C-R
equations: Uy =Dy Uy = —Vy.

We will see later that if f'(z) existsin D (i.e. f(2) is analytic in D) then "' (2),

£""(2), ..., f™(2), ... also exist, which implies that u(x, y) and v(x, ¥) have
an infinite number of partial derivatives.

Since Uy =1y  then  Uyy = Uy
Uy = —Vy then  Uyy = —Vy,,.

Thus u(x, y) is harmonic.



Since Uy = Vy then Uy, = Uy,
Butsince Uyy = Uyy, Wehave Vyy, = —Vyy or Uxy + 1, = 0.

Thus v(x, y) is harmonic.

Def. Ifu(x,y) and v(x, y) are harmonic functions in a domain D such that

f(z) = ulx,y) + iv(x,y) isanalyticin D, then u(x, y) and v(x, y) are
called harmonic conjugates.

Ex. letu(x,y) = x3 — 3xy2. show that u(x, y) is harmonic for all real x, y,
and find all harmonic conjugates and determine the corresponding analytic

function f(z) = u(x,y) + iv(x, y).

u, = 3x% — 3y?

Uy, = —bxy
Uy = 6X Uyy = —6bXx  (partial derivatives are continuous)

SO Uyy + Uy, = 6x — 6x =0, thus u(x,y) is harmonic.

Now we must find a v(x, y) such that:
u, = 3x* —3y* =,
Uy = —6Xy = —Uy

i.e. u(x,y) and v(x, y) must satisfy the C-R equations.



Finding v(x, ¥) is a lot like finding a potential function for a gradient vector field.
We start by integrating either equation with respect to the relevant variable.

v, = 6xy so v(x,y) = [(6xy)dx =3x%y + g(y).

Now differentiate v (X, y) with respect to y.
vy = 3x%* + g'(y) = 3x* = 3y*.
Thus g'(y) = —3y? and g(y) = —y3 +C.

Hence v(x,y) = 3x%y —y3 + C gives us all of the harmonic conjugates for
u(x,y) = x3 — 3xy?.

This means that:

f(@) =uley) + wlx,y) = (x° = 3xy?) +i(Bx*y — y°)

is analytic.

f(2) =ulx,y) +iv(x,y) = (x3 —3xy2) + i(Bx%y — y3 + ()

is also analytic for any constant C.

In order to find an expression for f(z) in terms of Z (not x and y) we need to
guess at what this might be based on u(x, y) and v(x, y).

Notice that z3 = (x + iy)3 = x3 + 3x2yi — 3xy? — iy3

= (x3 —3xy?) + i(3x%y — y?)

So f(z) = z3. Ingeneral f(z) = z3+ C.



