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                                    The Cauchy-Riemann Equations 

 

Theorem:  A necessary (but not sufficient) condition for a function               

 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) to be analytic (i.e. have a derivative) in a domain 𝐷 

is that 𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦 exist and satisfy the Cauchy-Riemann equations: 

                                𝑢𝑥 = 𝑣𝑦 ,           𝑢𝑦 = −𝑣𝑥 

at each point in 𝐷. 

Note:  If 𝑓(𝑧) is analytic at 𝑧0 then we can calculate 𝑓′(𝑧0) by: 

                                    𝑓′(𝑧0) = 𝑢𝑥(𝑥0, 𝑦0) + 𝑖 𝑣𝑥(𝑥0, 𝑦0)   

 

 Proof:    

                     Let 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦).   

 

         𝑓′(𝑧0) = lim
𝑧→𝑧0

𝑓(𝑧)−𝑓(𝑧0)

𝑧−𝑧0
    

                      = lim
𝑧→𝑧0

(𝑢(𝑥,𝑦)+𝑖𝑣(𝑥,𝑦))−(𝑢(𝑥0,𝑦0)+𝑖𝑣(𝑥0,𝑦0))

𝑧−𝑧0
 .   

 

     This limit must exist, and be the same, along every path approaching 𝑧0. 

    In particular it must work for: 

    Path 1:  𝑦 = 𝑦0,  so 𝑧 − 𝑧0 = 𝑥 − 𝑥0 = ∆𝑥 

    Path 2:  𝑥 = 𝑥0,  so 𝑧 − 𝑧0 = (𝑦 − 𝑦0)𝑖 = 𝑖∆𝑦. 
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     Along Path 1 we have: 

         𝑓′(𝑧0) = lim
𝑥→𝑥0

(𝑢(𝑥,𝑦)+𝑖𝑣(𝑥,𝑦))−(𝑢(𝑥0,𝑦0)+𝑖𝑣(𝑥0,𝑦0))

∆𝑥
    

                   = 𝑢𝑥(𝑥0, 𝑦0) + 𝑖𝑣𝑥(𝑥0, 𝑦0). 

 

    Along Path 2 we have: 

         𝑓′(𝑧0) = lim
𝑦→𝑦0

(𝑢(𝑥,𝑦)+𝑖𝑣(𝑥,𝑦))−(𝑢(𝑥0,𝑦0)+𝑖𝑣(𝑥0,𝑦0))

𝑖∆𝑦
    

                   = −𝑖𝑢𝑦(𝑥0, 𝑦0) + 𝑣𝑦(𝑥0, 𝑦0).  

 

     Since the limits have to be equal along both paths we have: 

               𝑢𝑥(𝑥0, 𝑦0) + 𝑖𝑣𝑥(𝑥0, 𝑦0) = −𝑖𝑢𝑦(𝑥0, 𝑦0) + 𝑣𝑦(𝑥0, 𝑦0). 

 

                 ⟹     𝑢𝑥 = 𝑣𝑦 ,           𝑢𝑦 = −𝑣𝑥 . 

 

 

Notice that this theorem says that you can’t necessarily create a differentiable 

complex function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) by choosing any real valued 

functions 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) whose partial derivatives exist. It’s not enough 

that the partial derivatives of 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) exist, they must also satisfy 

the Cauchy-Riemann equations:    𝑢𝑥 = 𝑣𝑦 ,    𝑢𝑦 = −𝑣𝑥   just to have a chance 

for 𝑓(𝑧) to be analytic (even if the C-R equations are satisfied, that doesn’t 

guarantee that the derivative of 𝑓(𝑧) exists). 
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Ex.  Let 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)      if  𝑧 ≠ 0,   and 𝑓(𝑧) = 0 if  𝑧 = 0,   

        where 

                 𝑢(𝑥, 𝑦) =
𝑥3−𝑦3

𝑥2+𝑦2 ;     𝑣(𝑥, 𝑦) =
𝑥3+𝑦3

𝑥2+𝑦2 ;    𝑢(0,0) = 0,   𝑣(0,0) = 0.  

Show that the C-R equations are satisfied at (0,0), but 𝑓′(0) doesn’t exist.    

 

𝑢𝑥(0,0) = lim
𝑥→0

𝑢(𝑥,0)−𝑢(0,0)

𝑥−0
= lim

𝑥→0

𝑥3

𝑥2

𝑥
 = 1   

 𝑢𝑦(0,0) =  lim
𝑦→0

𝑢(0,𝑦)−𝑢(0,0)

𝑦−0
= lim

𝑦→0

−
𝑦3

𝑦2

𝑦
 = −1 

𝑣𝑥(0,0) =   lim
𝑥→0

𝑣(𝑥,0)−𝑣(0,0)

𝑥−0
= lim

𝑥→0

𝑥3

𝑥2

𝑥
 = 1 

𝑣𝑦(0,0) =  lim
𝑦→0

𝑣(0,𝑦)−𝑣(0,0)

𝑦−0
= lim

𝑦→0

𝑦3

𝑦2

𝑦
 = 1. 

 

Thus we have:    𝑢𝑥(0,0) = 𝑣𝑦(0,0) = 1;      𝑢𝑦(0,0) = − 𝑣𝑥(0,0) = −1.    

So 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) satisfy the C-R equations.  

 

Now let’s calculate lim
𝑧→0

𝑓(𝑧)−𝑓(0)

𝑧−0
 by 2 paths to show that 𝑓′(0) doesn’t exist. 

Path 1:   let 𝑧 approach 0 along the 𝑥 axis (i.e. 𝑦 = 0). 

Path 2:   let 𝑧 approach 0 along the line 𝑦 = 𝑥 

 

 

 
Path 1 

Path 2 
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Along Path 1:    lim
𝑧→0

𝑓(𝑧)−𝑓(0)

𝑧−0
= lim

𝑥→0

(𝑢(𝑥,0)+𝑖𝑣(𝑥,0))−(𝑢(0,0)+𝑖𝑣(0,0))

𝑥
  

                                                           = lim
𝑥→0

𝑥3

𝑥2+𝑖(
𝑥3

𝑥2)

𝑥
 = 1 + 𝑖.    

 

Along Path 2:   𝑦 = 𝑥,  so  𝑢(𝑥, 𝑥) = 0,    𝑣(𝑥, 𝑥) = 𝑥 

                              lim
𝑧→0

𝑓(𝑧)−𝑓(0)

𝑧−0
= lim

𝑥→0

𝑖𝑥

𝑥+𝑖𝑥
=

𝑖

1+𝑖
 =

1

2
+

1

2
𝑖.    

 

So 𝑓′(0) doesn’t exist even though 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) satisfy the C-R equations. 

The “problem” is that 𝑢𝑥,𝑢𝑦, 𝑣𝑥, 𝑣𝑦 are not continuous at (0,0). 

 

Theorem: Let 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦).   A necessary and sufficient condition 

for 𝑓 to be analytic in a domain 𝐷 is that  𝑢𝑥,𝑢𝑦, 𝑣𝑥, 𝑣𝑦 exist, are continuous,  

and satisfy the Cauchy-Riemann equations,  𝑢𝑥 = 𝑣𝑦 ,    𝑢𝑦 = −𝑣𝑥. 

 

Ex.  Prove that the only complex analytic functions whose values (i.e. its range) 

are solely real numbers are constants.  

 

If 𝑓(𝑧) =  𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)  has only real values then 𝑓(𝑧) = 𝑢(𝑥, 𝑦),  

since 𝑣(𝑥, 𝑦) = 0.  

If 𝑓(𝑧) is analytic then 𝑢 and 𝑣 must satisfy the C-R equations.   

But 𝑣(𝑥, 𝑦) = 0  ⟹   𝑣𝑥 = 0 and 𝑣𝑦 = 0 at all points (𝑥, 𝑦). 

So the C-R equations then imply: 

                   𝑢𝑥 = 𝑣𝑦 = 0  and   𝑢𝑦 = −𝑣𝑥 = 0.                                                                                   

⇒    𝑢(𝑥, 𝑦) =constant since the partial derivatives of 𝑢 are 0 everywhere. 
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Ex.  Which of the following functions are analytic everywhere on ℂ (i.e. are entire 

functions)? 

a.   𝑓(𝑧) = 𝑧2 

b.   𝑓(𝑧) = 𝑧̅2 

c.   𝑓(𝑧) = |𝑧|2 

d.   𝑓(𝑧) = 𝑒𝑧 

 

a.  We already know 𝑓(𝑧) = 𝑧2 is analytic because we know how to take its 

derivative and we know that that exists everywhere.  However, to check via 

our theorem: 

𝑓(𝑧) = 𝑧2 = (𝑥 + 𝑖𝑦)2 = (𝑥2 − 𝑦2) + 𝑖(2𝑥𝑦).   

 

So        𝑢(𝑥, 𝑦) = 𝑥2 − 𝑦2,                   𝑣(𝑥, 𝑦) = 2𝑥𝑦   

       𝑢𝑥 = 2𝑥,      𝑢𝑦 = −2𝑦,            𝑣𝑥 = 2𝑦,     𝑣𝑦 = 2𝑥  (all continuous).  
 

Thus we have:          𝑢𝑥 = 𝑣𝑦 = 2𝑥     𝑢𝑦 = −𝑣𝑥 = −2𝑦,  

 

so 𝑓(𝑧) = 𝑧2 is analytic everywhere.  
 

 

b. 𝑓(𝑧) = 𝑧̅2 = (𝑥 − 𝑖𝑦)2 = 𝑥2 − 𝑦2 − 2𝑖𝑥𝑦.  

 

      So       𝑢(𝑥, 𝑦) = 𝑥2 − 𝑦2,                        𝑣(𝑥, 𝑦) = −2𝑥𝑦         

             𝑢𝑥 = 2𝑥,     𝑢𝑦 = −2𝑦,               𝑣𝑥 = −2𝑦,    𝑣𝑦 = −2𝑥.           

 

 𝑢𝑥 = 𝑣𝑦 ⟹  2𝑥 = −2𝑥;                 𝑢𝑦 = −𝑣𝑥 ⟹  −2𝑦 = 2𝑦. 

 

But the only point that satisfies both C-R equations is (0,0). However,  a 

function can't be analytic only at a single point (to be analytic at a point it 

must be analytic in a neighborhood of that point). Thus this function is not 

analytic anywhere. 
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c. 𝑓(𝑧) = |𝑧|2 = 𝑧𝑧̅ = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥2 + 𝑦2. 

 So  𝑢(𝑥, 𝑦) = 𝑥2 + 𝑦2,  𝑣(𝑥, 𝑦) = 0 and we already saw that the only 

analytic function whose values are all real is a constant function. Thus     

𝑓(𝑧) = |𝑧|2 is not analytic anywhere. 

 

d. 𝑓(𝑧) = 𝑒𝑧 = 𝑒(𝑥+𝑖𝑦) = 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦)  

 

             𝑢(𝑥, 𝑦) = 𝑒𝑥𝑐𝑜𝑠𝑦,                               𝑣(𝑥, 𝑦) = 𝑒𝑥𝑠𝑖𝑛𝑦           

    𝑢𝑥 = 𝑒𝑥𝑐𝑜𝑠𝑦,     𝑢𝑦 = −𝑒𝑥𝑠𝑖𝑛𝑦,          𝑣𝑥 = 𝑒𝑥𝑠𝑖𝑛𝑦,      𝑣𝑦 = 𝑒𝑥𝑐𝑜𝑠𝑦       

                                        So all partials are continuous.  

 

           𝑢𝑥 = 𝑣𝑦 = 𝑒𝑥𝑐𝑜𝑠𝑦,      𝑢𝑦 = −𝑣𝑥 = −𝑒𝑥𝑠𝑖𝑛𝑦.  

  

           Thus 𝑓(𝑧) = 𝑒𝑧 is analytic everywhere on ℂ. 

 

 

Def.   A point 𝑧0 is called an isolated singularity of 𝑓(𝑧) if 𝑓(𝑧) is not analytic at 

         𝑧0 but is analytic in a deleted neighborhood of  𝑧0 (a deleted neighborhood 

           of 𝑧0 is a neighborhood of 𝑧0 with the point  𝑧0 excluded).   

 

Ex.  𝑓(𝑧) =
1

𝑧−𝑖
    

 has an isolated singularity at 𝑧 = 𝑖.     

 

We know from our derivative formulas that 𝑓′(𝑧) exists for 𝑧 ≠ 𝑖.  At 𝑧 = 𝑖 the 

function is not defined so it can’t have a derivative at 𝑧 = 𝑖. 
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Laplace’s Equation 

     Laplace’s (differential) equation comes up frequently in physics (2 dimensional 

ideal fluid flow, steady state heat conduction, electrostatics, etc.).  In 2 

dimensions the equation is: 

            
𝜕2𝑢(𝑥,𝑦)

𝜕𝑥2 +
𝜕2𝑢(𝑥,𝑦)

𝜕𝑦2 = 0       or        𝑢𝑥𝑥(𝑥, 𝑦) + 𝑢𝑦𝑦(𝑥, 𝑦) = 0. 

This is sometimes written as:   ∇2𝑢 = 0   or     ∆𝑢 = 0. 

 

Def.  Any real valued function 𝑢(𝑥, 𝑦) that is a solution to Laplace’s equation and 

has continuous second partial derivatives is called harmonic. 

 

 

Theorem:  Let 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)  be an analytic function in 𝐷 ⊆ ℂ, 

then 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are harmonic in 𝐷.   

 

Proof:  Since  𝑓(𝑧) is analytic in 𝐷, 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) must satisfy the C-R 

equations:          𝑢𝑥 = 𝑣𝑦       𝑢𝑦 = −𝑣𝑥.  

 

We will see later that if 𝑓′(𝑧) exists in 𝐷 (i.e. 𝑓(𝑧) is analytic in 𝐷) then 𝑓′′(𝑧),

𝑓′′′(𝑧), … ,  𝑓(𝑛)(𝑧), … also exist, which implies that 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) have 

an infinite number of partial derivatives.  

 

Since              𝑢𝑥 = 𝑣𝑦     then       𝑢𝑥𝑥 = 𝑣𝑦𝑥 

                       𝑢𝑦 = −𝑣𝑥  then       𝑢𝑦𝑦 = −𝑣𝑥𝑦.  

 

But since 𝑣𝑥𝑦 = 𝑣𝑦𝑥,   we have   𝑢𝑥𝑥 = −𝑢𝑦𝑦   or   𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0.  

Thus 𝑢(𝑥, 𝑦) is harmonic. 
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Since              𝑢𝑥 = 𝑣𝑦    then       𝑢𝑥𝑦 = 𝑣𝑦𝑦 

                       𝑢𝑦 = −𝑣𝑥 then      𝑢𝑦𝑥 = −𝑣𝑥𝑥.  

 

But since 𝑢𝑥𝑦 = 𝑢𝑦𝑥,   we have   𝑣𝑦𝑦 = −𝑣𝑥𝑥   or   𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0. 

Thus 𝑣(𝑥, 𝑦) is harmonic. 

 

Def.  If 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are harmonic functions in a domain 𝐷 such that  

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)  is analytic in 𝐷, then 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are 

called harmonic conjugates. 

 

Ex.  let 𝑢(𝑥, 𝑦) = 𝑥3 − 3𝑥𝑦2.  Show that 𝑢(𝑥, 𝑦) is harmonic for all real 𝑥, 𝑦, 

and find all harmonic conjugates and determine the corresponding analytic 

function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦).   

 

  𝑢𝑥 = 3𝑥2 − 3𝑦2                𝑢𝑦 = −6𝑥𝑦 

𝑢𝑥𝑥 = 6𝑥                             𝑢𝑦𝑦 = −6𝑥       (partial derivatives are continuous) 

So        𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 6𝑥 − 6𝑥 = 0,  thus  𝑢(𝑥, 𝑦) is harmonic.  

 

Now we must find a 𝑣(𝑥, 𝑦) such that: 

𝑢𝑥 = 3𝑥2 − 3𝑦2 = 𝑣𝑦     

𝑢𝑦 = −6𝑥𝑦 = −𝑣𝑥  

i.e. 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) must satisfy the C-R equations. 
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Finding 𝑣(𝑥, 𝑦) is a lot like finding a potential function for a gradient vector field.  

We start by integrating either equation with respect to the relevant variable. 

𝑣𝑥 = 6𝑥𝑦     so    𝑣(𝑥, 𝑦) = ∫(6𝑥𝑦) 𝑑𝑥 = 3𝑥2𝑦 + 𝑔(𝑦).  

 

Now differentiate 𝑣(𝑥, 𝑦) with respect to 𝑦. 

𝑣𝑦 = 3𝑥2 + 𝑔′(𝑦) = 3𝑥2 − 3𝑦2.  

Thus 𝑔′(𝑦) = −3𝑦2   and   𝑔(𝑦) = −𝑦3 + 𝐶.  

 

Hence   𝑣(𝑥, 𝑦) = 3𝑥2𝑦 − 𝑦3 + 𝐶    gives us all of the harmonic conjugates for 

𝑢(𝑥, 𝑦) = 𝑥3 − 3𝑥𝑦2.  

 

This means that: 

           𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = (𝑥3 − 3𝑥𝑦2) + 𝑖(3𝑥2𝑦 − 𝑦3) 

 is analytic. 

           𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = (𝑥3 − 3𝑥𝑦2) + 𝑖(3𝑥2𝑦 − 𝑦3 + 𝐶) 

is also analytic for any constant 𝐶. 

 

In order to find an expression for 𝑓(𝑧) in terms of 𝑧 (not 𝑥 and 𝑦) we need to 

guess at what this might be based on 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦).  

 

Notice that 𝑧3 = (𝑥 + 𝑖𝑦)3 = 𝑥3 + 3𝑥2𝑦𝑖 − 3𝑥𝑦2 − 𝑖𝑦3 

                        = (𝑥3 − 3𝑥𝑦2) + 𝑖(3𝑥2𝑦 − 𝑦3)   

 

So  𝑓(𝑧) = 𝑧3.    In general 𝑓(𝑧) = 𝑧3 + 𝐶. 

 


