The Cauchy-Riemann Equations

Theorem: A necessary (but not sufficient) condition for a function $f(z) = u(x, y) + iv(x, y)$ to be analytic (i.e. have a derivative) in a domain D is that u_x , u_y , v_x , v_y exist and satisfy the **Cauchy-Riemann equations**:

$$
u_x = v_y, \qquad u_y = -v_x
$$

at each point in D .

Note: If $f(z)$ is analytic at z_0 then we can calculate $f'(z_0)$ by:

$$
f'(z_0) = u_x(x_0, y_0) + i v_x(x_0, y_0)
$$

Proof:

$$
Let f(z) = u(x, y) + iv(x, y).
$$

$$
f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

=
$$
\lim_{z \to z_0} \frac{(u(x, y) + iv(x, y)) - (u(x_0, y_0) + iv(x_0, y_0))}{z - z_0}
$$

This limit must exist, and be the same, along every path approaching z_0 . In particular it must work for:

Path 1:
$$
y = y_0
$$
, so $z - z_0 = x - x_0 = \Delta x$
Path 2: $x = x_0$, so $z - z_0 = (y - y_0)i = i\Delta y$.

.

Along Path 1 we have:

$$
f'(z_0) = \lim_{x \to x_0} \frac{(u(x,y) + iv(x,y)) - (u(x_0, y_0) + iv(x_0, y_0))}{\Delta x}
$$

= $u_x(x_0, y_0) + iv_x(x_0, y_0).$

Along Path 2 we have:

$$
f'(z_0) = \lim_{y \to y_0} \frac{(u(x,y) + iv(x,y)) - (u(x_0, y_0) + iv(x_0, y_0))}{i\Delta y}
$$

= $-iu_y(x_0, y_0) + v_y(x_0, y_0).$

Since the limits have to be equal along both paths we have:

$$
u_x(x_0, y_0) + iv_x(x_0, y_0) = -iu_y(x_0, y_0) + v_y(x_0, y_0).
$$

$$
\implies u_x = v_y, \qquad u_y = -v_x.
$$

Notice that this theorem says that you can't necessarily create a differentiable complex function $f(z) = u(x, y) + iv(x, y)$ by choosing any real valued functions $u(x, y)$ and $v(x, y)$ whose partial derivatives exist. It's not enough that the partial derivatives of $u(x, y)$ and $v(x, y)$ exist, they must also satisfy the **Cauchy-Riemann equations**: $u_x = v_y$, $u_y = -v_x$ just to have a chance for $f(z)$ to be analytic (even if the C-R equations are satisfied, that doesn't guarantee that the derivative of $f(z)$ exists).

Ex. Let $f(z) = u(x, y) + iv(x, y)$ if $z \neq 0$, and $f(z) = 0$ if $z = 0$, where

$$
u(x,y) = \frac{x^3 - y^3}{x^2 + y^2}; \quad v(x,y) = \frac{x^3 + y^3}{x^2 + y^2}; \quad u(0,0) = 0, \quad v(0,0) = 0.
$$

Show that the C-R equations are satisfied at $(0,0)$, but $f'(0)$ doesn't exist.

$$
u_x(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x - 0} = \lim_{x \to 0} \frac{\frac{x^3}{x^2}}{x} = 1
$$

$$
u_y(0,0) = \lim_{y \to 0} \frac{u(0,y) - u(0,0)}{y - 0} = \lim_{y \to 0} \frac{-\frac{y^3}{y^2}}{y} = -1
$$

$$
v_x(0,0) = \lim_{x \to 0} \frac{v(x,0) - v(0,0)}{x - 0} = \lim_{x \to 0} \frac{\frac{x^3}{x^2}}{x} = 1
$$

$$
v_y(0,0) = \lim_{y \to 0} \frac{v(0,y) - v(0,0)}{y - 0} = \lim_{y \to 0} \frac{\frac{y^3}{y^2}}{y} = 1.
$$

Thus we have: $u_x(0,0) = v_y(0,0) = 1;$ $u_y(0,0) = -v_x(0,0) = -1.$ So $u(x, y)$ and $v(x, y)$ satisfy the C-R equations.

Now let's calculate lim $z\rightarrow 0$ $f(z) - f(0)$ $\frac{f(-f)}{f(-f)}$ by 2 paths to show that $f'(0)$ doesn't exist. Path 1: let *z* approach 0 along the *x* axis (i.e. $y = 0$). Path 2: let *z* approach 0 along the line $y = x$

Along Path 1:
$$
\lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{x \to 0} \frac{(u(x, 0) + iv(x, 0)) - (u(0, 0) + iv(0, 0))}{x}
$$

$$
= \lim_{x \to 0} \frac{\frac{x^3}{x^2} + i(\frac{x^3}{x^2})}{x} = 1 + i.
$$

Along Path 2: $y = x$, so $u(x, x) = 0$, $v(x, x) = x$ lim $z\rightarrow 0$ $f(z)-f(0)$ $\frac{f^{(0)}(0)}{f^{(0)}(0)} = \lim_{x\to 0}$ $x\rightarrow 0$ $i\mathbf{x}$ $x+ix$ $=\frac{i}{1}$ $1+i$ $=\frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$

So $f'(0)$ doesn't exist even though $u(x, y)$ and $v(x, y)$ satisfy the C-R equations. The "problem" is that u_x, u_y, v_x, v_y are not continuous at $(0,0)$.

Theorem: Let $f(z) = u(x, y) + iv(x, y)$. A necessary and sufficient condition for f to be analytic in a domain D is that u_x, u_y, v_x, v_y exist, are continuous, and satisfy the Cauchy-Riemann equations, $u_x = v_y$, $u_y = -v_x$.

Ex. Prove that the only complex analytic functions whose values (i.e. its range) are solely real numbers are constants.

If $f(z) = u(x, y) + iv(x, y)$ has only real values then $f(z) = u(x, y)$, since $v(x, y) = 0$.

If $f(z)$ is analytic then u and v must satisfy the C-R equations.

But $v(x, y) = 0 \implies v_x = 0$ and $v_y = 0$ at all points (x, y) .

So the C-R equations then imply:

 $u_x = v_y = 0$ and $u_y = -v_x = 0$.

 $\Rightarrow u(x, y) =$ constant since the partial derivatives of u are 0 everywhere.

 $rac{1}{2}i$.

Ex. Which of the following functions are analytic everywhere on $\mathbb C$ (i.e. are entire functions)?

- a. $f(z) = z^2$ b. $f(z) = \bar{z}^2$ c. $f(z) = |z|^2$
- d. $f(z) = e^{z}$
- a. We already know $f(z) = z^2$ is analytic because we know how to take its derivative and we know that that exists everywhere. However, to check via our theorem:
	- $f(z) = z^2 = (x + iy)^2 = (x^2 y^2) + i(2xy).$ So $u(x, y) = x^2 - y^2$, $v(x, y) = 2xy$ $u_x = 2x$, $u_y = -2y$, $v_x = 2y$, $v_y = 2x$ (all continuous).

Thus we have: $u_x = v_y = 2x$ $u_y = -v_x = -2y$,

so $f(z) = z^2$ is analytic everywhere.

- b. $f(z) = \bar{z}^2 = (x iy)^2 = x^2 y^2 2ixy$.
- So $u(x, y) = x^2 y^2$ $v(x, y) = -2xy$ $u_x = 2x$, $u_y = -2y$, $v_x = -2y$, $v_y = -2x$.
	- $u_x = v_y \implies 2x = -2x;$ $u_y = -v_x \implies -2y = 2y.$

But the only point that satisfies both C-R equations is $(0,0)$. However, a function can't be analytic only at a single point (to be analytic at a point it must be analytic in a neighborhood of that point). Thus this function is not analytic anywhere.

c.
$$
f(z) = |z|^2 = z\overline{z} = (x + iy)(x - iy) = x^2 + y^2
$$
.

So $u(x, y) = x^2 + y^2$, $v(x, y) = 0$ and we already saw that the only analytic function whose values are all real is a constant function. Thus $f(z) = |z|^2$ is not analytic anywhere.

d.
$$
f(z) = e^z = e^{(x+iy)} = e^x(cos y + isiny)
$$

$$
u(x, y) = e^x \cos y, \qquad v(x, y) = e^x \sin y
$$

 $u_x = e^x \cos y$, $u_y = -e^x \sin y$, $v_x = e^x \sin y$, $v_y = e^x \cos y$

So all partials are continuous.

$$
u_x = v_y = e^x \cos y, \quad u_y = -v_x = -e^x \sin y.
$$

Thus
$$
f(z) = e^z
$$
 is analytic everywhere on C.

Def. A point z_0 is called an **isolated singularity** of $f(z)$ if $f(z)$ is not analytic at Z_0 but is analytic in a deleted neighborhood of Z_0 (a deleted neighborhood of z_0 is a neighborhood of z_0 with the point z_0 excluded).

$$
Ex. f(z) = \frac{1}{z-i}
$$

has an isolated singularity at $z = i$.

We know from our derivative formulas that $f'(z)$ exists for $z \neq i$. At $z = i$ the function is not defined so it can't have a derivative at $z = i$.

Laplace's Equation

 Laplace's (differential) equation comes up frequently in physics (2 dimensional ideal fluid flow, steady state heat conduction, electrostatics, etc.). In 2 dimensions the equation is:

$$
\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0 \quad \text{or} \quad u_{xx}(x,y) + u_{yy}(x,y) = 0.
$$

This is sometimes written as: $\nabla^2 u = 0$ or $\Delta u = 0$.

Def. Any real valued function $u(x, y)$ that is a solution to Laplace's equation and has continuous second partial derivatives is called **harmonic**.

Theorem: Let $f(z) = u(x, y) + iv(x, y)$ be an analytic function in $D \subseteq \mathbb{C}$, then $u(x, y)$ and $v(x, y)$ are harmonic in D.

Proof: Since $f(z)$ is analytic in D, $u(x, y)$ and $v(x, y)$ must satisfy the C-R equations: $u_x = v_y$ $u_y = -v_x$.

We will see later that if $f'(z)$ exists in D (i.e. $f(z)$ is analytic in D) then $f''(z)$, $f'''(z),...$, $f^{(n)}(z),...$ also exist, which implies that $u(x,y)$ and $v(x,y)$ have an infinite number of partial derivatives.

Since $u_x = v_y$ then $u_{xx} = v_{yx}$

$$
u_y = -v_x \text{ then } u_{yy} = -v_{xy}.
$$

But since $v_{xy} = v_{yx}$, we have $u_{xx} = -u_{yy}$ or $u_{xx} + u_{yy} = 0$. Thus $u(x, y)$ is harmonic.

Since $u_x = v_y$ then $u_{xy} = v_{yy}$

$$
u_y = -v_x \text{ then } u_{yx} = -v_{xx}.
$$

But since $u_{xy} = u_{yx}$, we have $v_{yy} = -v_{xx}$ or $v_{xx} + v_{yy} = 0$. Thus $v(x, y)$ is harmonic.

Def. If $u(x, y)$ and $v(x, y)$ are harmonic functions in a domain D such that $f(z) = u(x, y) + iv(x, y)$ is analytic in D, then $u(x, y)$ and $v(x, y)$ are called **harmonic conjugates**.

Ex. let $u(x, y) = x^3 - 3xy^2$. Show that $u(x, y)$ is harmonic for all real x, y , and find all harmonic conjugates and determine the corresponding analytic function $f(z) = u(x, y) + iv(x, y)$.

 $u_x = 3x^2 - 3y^2$ $u_y = -6xy$ $u_{xx} = 6x$ $u_{yy} = -6x$ (partial derivatives are continuous) So $u_{xx} + u_{yy} = 6x - 6x = 0$, thus $u(x, y)$ is harmonic.

Now we must find a $v(x, y)$ such that:

$$
u_x = 3x^2 - 3y^2 = v_y
$$

$$
u_y = -6xy = -v_x
$$

i.e. $u(x, y)$ and $v(x, y)$ must satisfy the C-R equations.

Finding $v(x, y)$ is a lot like finding a potential function for a gradient vector field. We start by integrating either equation with respect to the relevant variable.

$$
v_x = 6xy
$$
 so $v(x, y) = \int (6xy) dx = 3x^2y + g(y)$.

Now differentiate $v(x, y)$ with respect to y .

$$
v_y = 3x^2 + g'(y) = 3x^2 - 3y^2
$$
.
Thus $g'(y) = -3y^2$ and $g(y) = -y^3 + C$.

Hence $v(x, y) = 3x^2y - y^3 + C$ gives us all of the harmonic conjugates for $u(x, y) = x^3 - 3xy^2.$

This means that:

$$
f(z) = u(x, y) + iv(x, y) = (x3 - 3xy2) + i(3x2y - y3)
$$

is analytic.

$$
f(z) = u(x, y) + iv(x, y) = (x3 - 3xy2) + i(3x2y - y3 + C)
$$

is also analytic for any constant C .

In order to find an expression for $f(z)$ in terms of z (not x and y) we need to guess at what this might be based on $u(x, y)$ and $v(x, y)$.

Notice that
$$
z^3 = (x + iy)^3 = x^3 + 3x^2yi - 3xy^2 - iy^3
$$

= $(x^3 - 3xy^2) + i(3x^2y - y^3)$

So $f(z) = z^3$. In general $f(z) = z^3 + C$.