The Cauchy-Riemann Equations- HW Problems

In problems 1-3 show that the real and imaginafy parts of the functions satisfy the Cauchy-Riemann equations everywhere and that the functions are analytic everywhere.

1. $f(z) = \sin(z)$ (Hint: use $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$)

2.
$$f(z) = \cosh(z)$$

3. $f(z) = ze^{z}$

4. Show that $f(z) = x^2 + iy^2$ is not analytic anywhere even though the Cauchy-Riemann equations are satisfied at (0,0).

5. Use the Cauchy-Riemann equations to determine which of the following functions is/are analytic on \mathbb{C} ?

- a. $f(z) = \overline{z}$
- b. $g(z) = e^{(z^2)}$
- c. $g(z) = e^{\overline{z}}$

6. Show that the following functions are harmonic and find all harmonic conjugates.

a. $u(x, y) = e^x \sin(y)$

b.
$$u(x,y) = x^2 - y^2$$

c.
$$u(x,y) = (\sin(x))(\cosh(y))$$

7. Suppose that f(z) is analytic in a domain $D \subseteq \mathbb{C}$. Prove that if $\overline{f}(z)$ is analytic then f(z) is a constant function.