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                                The Derivative of a Complex Function 

 

Def.  Let 𝑤 = 𝑓(𝑧) be a single valued function defined in a domain 𝐷 ⊆ ℂ.  We 

         define the derivative of 𝑓(𝑧) at 𝑧0 ∈ 𝐷, 𝑓′(𝑧0) as 

                                      𝑓′(𝑧0) = lim
𝑧→𝑧0

𝑓(𝑧)−𝑓(𝑧0)

𝑧−𝑧0
  

         if this limit exists. 

Alternatively, we could define 𝑓′(𝑧0) as 

                                      𝑓′(𝑧0) = lim
ℎ→0

𝑓(𝑧0+ℎ)−𝑓(𝑧0)

ℎ
     

if this limit exists.  However, note that ℎ can be thought of as any sequence of 

complex numbers approaching 0. 

 

Def.  A single valued function is said to be analytic, or holomorphic, or regular, in 

          a domain 𝐷 if it has a derivative at every point in 𝐷. 

 

 

Def.  A function is said to be analytic (or holomorphic, or regular) at a point  

          𝒛𝟎 ∈ 𝑫, if 𝑓(𝑧) is analytic in any neighborhood of 𝑧0. 

 

 

Def.  A function that is anayltic/holomorphic/regular at every point 𝑧 ∈ ℂ is 

          called an entire function. 
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As with real valued functions: 

Theorem:  If 𝑓(𝑧) has a derivative at a point 𝑧0, then 𝑓(𝑧) is continuous at 𝑧0. 

 

Proof:      lim
𝑧→𝑧0

(𝑓(𝑧) − 𝑓(𝑧0)) = lim
𝑧→𝑧0

[(
𝑓(𝑧)−𝑓(𝑧0)

𝑧−𝑧0
) (𝑧 − 𝑧0)]    

                                                    = 𝑓′(𝑧0) lim
𝑧→𝑧0

(𝑧 − 𝑧0)] 

                                                     = 0. 

                ⟹              lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0).  

                So 𝑓(𝑧) is continuous at 𝑧0. 

 

Thus differentiable at 𝑧0 implies continuous at 𝑧0, but continuous at 𝑧0 does not 

imply differentiable at 𝑧0. 

 

Ex.  Prove that 𝑓(𝑧) = 𝑧̅ is continuous everywhere, but not differentiable 

       anywhere. 

 

      To prove 𝑓(𝑧) = 𝑧̅ is continuous everywhere we must show that for all 

      𝜖 > 0 there exists a 𝛿 > 0 such that if |𝑧 − 𝑧0| < 𝛿 then |𝑧̅ -𝑧0̅| < 𝜖. 

      Since |𝑤| = |𝑤̅| 

                |𝑧 − 𝑧0| = |𝑧 − 𝑧0̅̅ ̅̅ ̅̅ ̅̅ | = |𝑧̅ − 𝑧0̅|,  so 

        choose 𝛿 = 𝜖. 

       Then  |𝑧 − 𝑧0| < 𝛿 = 𝜖. 

        But    |𝑧 − 𝑧0| = |𝑧̅ − 𝑧0̅̅ ̅| so  |𝑧 ̅-𝑧0̅| < 𝜖. 

        Thus 𝑓(𝑧) = 𝑧̅ is continuous everywhere. 
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Now let's show that 𝑓 ′(𝑧0) = lim
ℎ→0

𝑓(𝑧0+ℎ)−𝑓(𝑧0)

ℎ
 doesn't exist for any 𝑧0.  

 

lim
ℎ→0

𝑓(𝑧0+ℎ)−𝑓(𝑧0)

ℎ
= lim

ℎ→0

𝑧0+ℎ̅̅ ̅̅ ̅̅ ̅̅ −𝑧0̅̅ ̅

ℎ
= lim

ℎ→0

ℎ̅

ℎ
 .      

 

If we let ℎ approach 0 along the real axis, that is ℎ = 𝑥, 𝑥 ∈ ℝ, then ℎ̅ = ℎ. 

Thus   lim
ℎ→0

ℎ̅

ℎ
= lim

ℎ→0

ℎ

ℎ
= 1 along that path.     

 

If we let ℎ approach 0 along the imaginary axis, that is ℎ = 𝑦𝑖, 𝑦 ∈ ℝ, then 

ℎ̅ = −ℎ. 

Thus   lim
ℎ→0

ℎ̅

ℎ
= lim

ℎ→0

−ℎ

ℎ
= − 1 along that path. 

 

 Hence   lim
ℎ→0

𝑓(𝑧0+ℎ)−𝑓(𝑧0)

ℎ
 doesn’t exist because we get different values with 

different paths as ℎ goes to 0.    

 

Thus  𝑓(𝑧) = 𝑧̅  is not differentiable anywhere. 

 

 

Theorem:  Let 𝑓(𝑧) = 𝑐,    𝑔(𝑧) = 𝑧,  then 

a.   𝑓′(𝑧) = 0 

b.   𝑔′(𝑧) = 1 

This follows directly from the definition of a derivative. 
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As with functions of one real variable we have the following differentiation rules: 

Theorem:  Let 𝑤 = 𝑓(𝑧)  and  𝑤 = 𝑔(𝑧) be differentiable at 𝑧 ∈ ℂ, then 

1.  (𝑓(𝑧) ± 𝑔(𝑧))′ = 𝑓′(𝑧) ± 𝑔′(𝑧) 

2.   (𝑓(𝑧)𝑔(𝑧))′ = 𝑓(𝑧)𝑔′(𝑧) + 𝑔(𝑧)𝑓′(𝑧)     (product rule) 

3.    (
𝑓(𝑧)

𝑔(𝑧)
)′ = 𝑔(𝑧)𝑓′(𝑧)−𝑓(𝑧)𝑔′(𝑧)

(𝑔(𝑧))
2                             (quotient rule). 

 

Theorem (chain rule):  If 𝑓(𝑧) is differentiable in a neighborhood of 𝑧0 ∈ 𝐷, and 

𝑔(𝑧) is differentiable in a neighborhood of 𝑓(𝑧0) and 𝑤 = 𝑔(𝑓(𝑧)) then 

                                      
𝑑𝑤

𝑑𝑧
 = 𝑔′(𝑓(𝑧0))𝑓′(𝑧0). 

 

Ex.   If  𝑤 = (2𝑧3 + 𝑧 + 1)10 then  
𝑑𝑤

𝑑𝑧
= 10(2𝑧3 + 𝑧 + 1)

9
(6𝑧2 + 1). 

 

Theorem:  if 𝑓(𝑧) = 𝑒𝑧, then 𝑓′(𝑧) = 𝑒𝑧. 

 

Proof:   𝑓′(𝑧) = lim
ℎ→0

𝑓(𝑧+ℎ)−𝑓(𝑧)

ℎ
    

                        = lim
ℎ→0

𝑒(𝑧+ℎ)−𝑒𝑧

ℎ
   

                         = lim
ℎ→0

𝑒𝑧(𝑒ℎ−1)

ℎ
  .   

 

𝑒ℎ = 1 + ℎ +
ℎ2

2!
+

ℎ3

3!
+ ⋯ ;     so 

𝑒ℎ − 1 = ℎ +
ℎ2

2!
+

ℎ3

3!
+ ⋯ = ℎ(1 +

ℎ

2!
+

ℎ2

3!
+ ⋯ )   
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                 𝑓′(𝑧) = lim
ℎ→0

𝑒𝑧(𝑒ℎ−1)

ℎ
    

                              = 𝑒𝑧 lim
ℎ→0

ℎ(1+ ℎ
2!+

ℎ
2

3! +⋯ )

ℎ
    

                           = 𝑒𝑧.   

 

Note: We are “cheating” a bit here because we don’t know yet that the above 

power series calculations are “legitimate”. 

 

Since trig functions and hyperbolic functions are defined in terms of the function 

𝑒𝑧,  we can now find their derivatives using the derivative rules.  

 

Theorem:        (sin(𝑧))′ = 𝑐𝑜𝑠𝑧,             (cos(𝑧))′ = −𝑠𝑖𝑛𝑧.   

 

Proof:     
𝑑

𝑑𝑧
 (𝑠𝑖𝑛𝑧) =

𝑑

𝑑𝑧
(

𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
) 

                                  =
1

2𝑖
(𝑖𝑒𝑖𝑧 + 𝑖𝑒−𝑖𝑧) 

                                   =
𝑒𝑖𝑧+𝑒−𝑖𝑧

2
= 𝑐𝑜𝑠𝑧.        

 

             
𝑑

𝑑𝑧
(𝑐𝑜𝑠𝑧) =

𝑑

𝑑𝑧
(

𝑒𝑖𝑧+𝑒−𝑖𝑧

2
) 

                                  =
1

2
(𝑖𝑒𝑖𝑧 − 𝑖𝑒−𝑖𝑧) 

                                   = −
𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
= −𝑠𝑖𝑛𝑧 .     
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Since (sin(𝑧))′ = 𝑐𝑜𝑠𝑧,   (cos(𝑧))′ = −𝑠𝑖𝑛𝑧,  we can get the derivatives of 

the other trig functions using the derivative rules: 

𝑑

𝑑𝑧
(𝑡𝑎𝑛𝑧) = 𝑠𝑒𝑐2𝑧,                        

𝑑

𝑑𝑧
(𝑐𝑠𝑐𝑧) = −(𝑐𝑠𝑐𝑧)(𝑐𝑜𝑡𝑧),     

𝑑

𝑑𝑧
(𝑐𝑜𝑡𝑧) = −𝑐𝑠𝑐2𝑧                      

𝑑

𝑑𝑧
(𝑠𝑒𝑐𝑧) = (𝑠𝑒𝑐𝑧)(𝑡𝑎𝑛𝑧).   

 

 

Given that 𝑠𝑖𝑛ℎ(𝑧) =
𝑒𝑧−𝑒−𝑧

2
  and 𝑐𝑜𝑠ℎ(𝑧) =

𝑒𝑧+𝑒−𝑧

2
 :     

𝑑

𝑑𝑧
(sinh(𝑧)) =

𝑑

𝑑𝑧
(

𝑒𝑧−𝑒−𝑧

2
) =

𝑒𝑧+𝑒−𝑧

2
= cosh(z)  

𝑑

𝑑𝑧
(cosh(𝑧)) =

𝑑

𝑑𝑧
(

𝑒𝑧+𝑒−𝑧

2
) =

𝑒𝑧−𝑒−𝑧

2
= sinh(z).  

 

 

We can now use the derivative rules to find: 

𝑑

𝑑𝑧
(tanh (𝑧)) = 𝑠𝑒𝑐ℎ2(𝑧)            

𝑑

𝑑𝑧
(csch (𝑧)) = −(csch (𝑧))(coth(𝑧))  

 

𝑑

𝑑𝑧
(coth (𝑧)) = −𝑐𝑠𝑐ℎ2(𝑧)          

𝑑

𝑑𝑧
(sech (𝑧)) = −(sech(𝑧))(tanh(𝑧)).                                            
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Ex.  Where are the following functions differentiable? 

               a.    
𝑧+2

𝑧2+9
                     b.     𝑠𝑒𝑐𝑧  

 

a. The derivative of 𝑅(𝑧) =
𝑃(𝑧)

𝑄(𝑧)
 ,  is defined for all 𝑧 such that 𝑄(𝑧) ≠ 0. 

In this case, where 𝑧2 + 9 ≠ 0. 

𝑧2 + 9 = 0  
(𝑧 + 3𝑖)(𝑧 − 3𝑖) = 0  

𝑧 = ±3𝑖  

So  
𝑧+2

𝑧2+9
 is differentiable for all 𝑧 ∈ ℂ such that 𝑧 ≠ ±3𝑖. 

 

b. 𝑠𝑒𝑐𝑧 =
1

𝑐𝑜𝑠𝑧
=

1
𝑒𝑖𝑧+𝑒−𝑖𝑧

2

=
2

𝑒𝑖𝑧+𝑒−𝑖𝑧    

So the domain of 𝑠𝑒𝑐𝑧 is all 𝑧 ∈ ℂ such that 𝑒𝑖𝑧 + 𝑒−𝑖𝑧 ≠ 0. 

𝑒𝑖𝑧 + 𝑒−𝑖𝑧 = 0  

 

𝑒2𝑖𝑧 + 1 = 0  

 

𝑒2𝑖𝑧 = −1 = 𝑒(𝜋𝑖+2𝜋𝑛𝑖),        𝑛 = 0, ±1, ±2, …   

 

  2𝑖𝑧 = (2𝑛 + 1)𝜋𝑖  

 

      𝑧 =
(2𝑛+1)

2
𝜋,                        𝑛 = 0, ±1, ±2, …  

 

So the domain of 𝑠𝑒𝑐𝑧 is all 𝑧 ∈ ℂ such that 

 𝑧 ≠
(2𝑛+1)

2
𝜋,   𝑛 = 0, ±1, ±2, … . 

We also know that   
𝑑

𝑑𝑧
(𝑠𝑒𝑐𝑧) = (𝑠𝑒𝑐𝑧)(𝑡𝑎𝑛𝑧).  This is defined for all 

𝑧 such that 𝑐𝑜𝑠𝑧 ≠ 0 (the same domain as 𝑠𝑒𝑐𝑧).  So the derivative of 

𝑠𝑒𝑐𝑧 exists for all 𝑧 ∈ ℂ such that 𝑧 ≠
(2𝑛+1)

2
𝜋, 𝑛 = 0, ±1, ±2, …. 


