The Derivative of a Complex Function

Def. Let $w = f(z)$ be a single valued function defined in a domain $D \subseteq \mathbb{C}$. We define the derivative of $f(z)$ at $z_0 \in D$, $f'(z_0)$ as

$$
f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

if this limit exists.

Alternatively, we could define $f'(z_0)$ as

$$
f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}
$$

if this limit exists. However, note that h can be thought of as any sequence of complex numbers approaching 0.

- Def. A single valued function is said to be **analytic**, or **holomorphic**, or **regular**, in a domain D if it has a derivative at every point in D .
- Def. A function is said to be **analytic (or holomorphic, or regular) at a point** $z_0 \in D$, if $f(z)$ is analytic in any neighborhood of z_0 .
- Def. A function that is anayltic/holomorphic/regular at every point $z \in \mathbb{C}$ is called an **entire** function.

As with real valued functions:

Theorem: If $f(z)$ has a derivative at a point z_0 , then $f(z)$ is continuous at z_0 .

Proof:
$$
\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \left[\frac{f(z) - f(z_0)}{z - z_0} \right) (z - z_0) \right]
$$

$$
= f'(z_0) \lim_{z \to z_0} (z - z_0) \Big]
$$

$$
= 0.
$$

$$
\implies \lim_{z \to z_0} f(z) = f(z_0).
$$
So $f(z)$ is continuous at z_0 .

Thus differentiable at z_0 implies continuous at z_0 , but continuous at z_0 does not imply differentiable at z_0 .

Ex. Prove that $f(z) = \overline{z}$ is continuous everywhere, but not differentiable anywhere.

To prove $f(z) = \overline{z}$ is continuous everywhere we must show that for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $|z-z_0| < \delta$ then $|\bar{z} \cdot \bar{z_0}| < \epsilon$. Since $|w| = |\overline{w}|$ $|z - z_0| = |\overline{z} - \overline{z_0}| = |\bar{z} - \overline{z_0}|$, so choose $\delta = \epsilon$. Then $|z-z_0|<\delta=\epsilon.$ But $|z-z_0| = |\overline{z}-\overline{z_0}|$ so $|\overline{z} \cdot \overline{z_0}| < \epsilon$. Thus $f(z) = \bar{z}$ is continuous everywhere.

Now let's show that $f'(z_0) = \lim_{h \to 0}$ $h\rightarrow 0$ $f(z_0+h)-f(z_0)$ $\frac{h}{h}$ doesn't exist for any z_0 .

$$
\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{\overline{z_0 + h} - \overline{z_0}}{h} = \lim_{h \to 0} \frac{\overline{h}}{h}.
$$

If we let h approach 0 along the real axis, that is $h = x$, $x \in \mathbb{R}$, then $\bar{h} = h$. Thus lim $h\rightarrow 0$ \overline{h} $\frac{n}{h} = \lim_{h \to 0}$ $h\rightarrow 0$ ℎ $\frac{n}{h} = 1$ along that path.

If we let h approach 0 along the imaginary axis, that is $h = yi$, $y \in \mathbb{R}$, then $\bar{h} = -h$.

Thus lim $h\rightarrow 0$ \overline{h} $\frac{n}{h} = \lim_{h \to 0}$ $h\rightarrow 0$ $-h$ $\frac{n}{h}$ = $-$ 1 along that path.

Hence lim $h\rightarrow 0$ $f(z_0+h)-f(z_0)$ $\frac{b}{h}$ doesn't exist because we get different values with different paths as h goes to 0 .

Thus $f(z) = \overline{z}$ is not differentiable anywhere.

Theorem: Let $f(z) = c$, $g(z) = z$, then

a. $f'(z) = 0$ b. $g'(z) = 1$

This follows directly from the definition of a derivative.

As with functions of one real variable we have the following differentiation rules: Theorem: Let $w = f(z)$ and $w = g(z)$ be differentiable at $z \in \mathbb{C}$, then

1.
$$
(f(z) \pm g(z))' = f'(z) \pm g'(z)
$$

\n2. $(f(z)g(z))' = f(z)g'(z) + g(z)f'(z)$ (product rule)
\n3. $(\frac{f(z)}{g(z)})' = \frac{g(z)f'(z) - f(z)g'(z)}{(g(z))^2}$ (quotient rule).

Theorem (chain rule): If $f(z)$ is differentiable in a neighborhood of $z_0 \in D$, and $g(z)$ is differentiable in a neighborhood of $f(z_0)$ and $w = g(f(z))$ then

$$
\frac{dw}{dz} = g'(f(z_0))f'(z_0).
$$

Ex. If
$$
w = (2z^3 + z + 1)^{10}
$$
 then $\frac{dw}{dz} = 10(2z^3 + z + 1)^9(6z^2 + 1)$.

Theorem: if $f(z) = e^z$, then $f'(z) = e^z$.

Proof:
$$
f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}
$$

= $\lim_{h \to 0} \frac{e^{(z+h)} - e^z}{h}$
= $\lim_{h \to 0} \frac{e^z(e^h - 1)}{h}$.

$$
e^{h} = 1 + h + \frac{h^{2}}{2!} + \frac{h^{3}}{3!} + \cdots; \quad \text{so}
$$

$$
e^{h} - 1 = h + \frac{h^{2}}{2!} + \frac{h^{3}}{3!} + \cdots = h(1 + \frac{h}{2!} + \frac{h^{2}}{3!} + \cdots)
$$

$$
f'(z) = \lim_{h \to 0} \frac{e^{z}(e^h - 1)}{h}
$$

= $e^z \lim_{h \to 0} \frac{h(1 + \frac{h}{2!} + \frac{h^2}{3!} + \cdots)}{h}$
= e^z .

Note: We are "cheating" a bit here because we don't know yet that the above power series calculations are "legitimate".

Since trig functions and hyperbolic functions are defined in terms of the function e^z , we can now find their derivatives using the derivative rules.

Theorem: $(\sin(z))' = \cos z$, $(\cos(z))' = -\sin z$.

Proof:
$$
\frac{d}{dz} (sinz) = \frac{d}{dz} \left(\frac{e^{iz} - e^{-iz}}{2i} \right)
$$

$$
= \frac{1}{2i} (ie^{iz} + ie^{-iz})
$$

$$
= \frac{e^{iz} + e^{-iz}}{2} = \cos z.
$$

$$
\frac{d}{dz}(cos z) = \frac{d}{dz}\left(\frac{e^{iz} + e^{-iz}}{2}\right)
$$

$$
= \frac{1}{2}\left(ie^{iz} - ie^{-iz}\right)
$$

$$
= -\frac{e^{iz} - e^{-iz}}{2i} = -sin z.
$$

Since $(\sin(z))' = \cos z$, $(\cos(z))' = -\sin z$, we can get the derivatives of the other trig functions using the derivative rules:

$$
\frac{d}{dz}(tanz) = sec^2 z, \qquad \frac{d}{dz}(cscz) = -(cscz)(cotz),
$$

$$
\frac{d}{dz}(cotz) = -csc^2 z \qquad \frac{d}{dz}(secz) = (secz)(tanz).
$$

Given that
$$
sinh(z) = \frac{e^{z} - e^{-z}}{2}
$$
 and $cosh(z) = \frac{e^{z} + e^{-z}}{2}$:
\n
$$
\frac{d}{dz} (sinh(z)) = \frac{d}{dz} (\frac{e^{z} - e^{-z}}{2}) = \frac{e^{z} + e^{-z}}{2} = \cosh(z)
$$
\n
$$
\frac{d}{dz} (cosh(z)) = \frac{d}{dz} (\frac{e^{z} + e^{-z}}{2}) = \frac{e^{z} - e^{-z}}{2} = \sinh(z).
$$

We can now use the derivative rules to find:

$$
\frac{d}{dz}(\tanh(z)) = sech^2(z) \qquad \frac{d}{dz}(\operatorname{csch}(z)) = -(\operatorname{csch}(z))(\operatorname{coth}(z))
$$

$$
\frac{d}{dz}(\operatorname{coth}(z)) = -csch^2(z) \qquad \frac{d}{dz}(\operatorname{sech}(z)) = -(\operatorname{sech}(z))(\tanh(z)).
$$

Ex. Where are the following functions differentiable?

a.
$$
\frac{z+2}{z^2+9}
$$
 b. secz

a. The derivative of $R(z) = \frac{P(z)}{Q(z)}$ $\frac{d^{2}(z)}{Q(z)}$, is defined for all *z* such that $Q(z) \neq 0$. In this case, where $z^2 + 9 \neq 0$. $z^2 + 9 = 0$ $(z + 3i)(z - 3i) = 0$ $z = +3i$ $z+2$

So z^2+9 is differentiable for all $z \in \mathbb{C}$ such that $z \neq \pm 3i$.

b.
$$
\sec z = \frac{1}{\cos z} = \frac{1}{\frac{e^{iz} + e^{-iz}}{2}} = \frac{2}{e^{iz} + e^{-iz}}
$$

\nSo the domain of $\sec z$ is all $z \in \mathbb{C}$ such that $e^{iz} + e^{-iz} \neq 0$.
\n $e^{iz} + e^{-iz} = 0$
\n $e^{2iz} + 1 = 0$
\n $e^{2iz} = -1 = e^{(\pi i + 2\pi n i)}, \qquad n = 0, \pm 1, \pm 2, ...$
\n $2iz = (2n + 1)\pi i$
\n $z = \frac{(2n+1)}{2}\pi, \qquad n = 0, \pm 1, \pm 2, ...$

So the domain of $secz$ is all $z \in \mathbb{C}$ such that $z \neq \frac{(2n+1)}{2}$ $\frac{n+1}{2}\pi$, $n = 0, \pm 1, \pm 2, \dots$ We also know that $\frac{d}{dt}$ $\frac{u}{dz}$ (secz) = (secz)(tanz). This is defined for all z such that $cos z \neq 0$ (the same domain as $sec z$). So the derivative of *Secz* exists for all $z \in \mathbb{C}$ such that $z \neq \frac{(2n+1)}{2}$ $\frac{n+1}{2}\pi$, $n = 0, \pm 1, \pm 2, ...$