The Derivative of a Complex Function

Def. Let w = f(z) be a single valued function defined in a domain $D \subseteq \mathbb{C}$. We define the derivative of f(z) at $z_0 \in D$, $f'(z_0)$ as

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

if this limit exists.

Alternatively, we could define $f'(z_0)$ as

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

if this limit exists. However, note that h can be thought of as any sequence of complex numbers approaching 0.

- Def. A single valued function is said to be **analytic**, or **holomorphic**, or **regular**, in a domain D if it has a derivative at every point in D.
- Def. A function is said to be **analytic (or holomorphic, or regular) at a point** $z_0 \in D$, if f(z) is analytic in any neighborhood of z_0 .
- Def. A function that is anayltic/holomorphic/regular at every point $z \in \mathbb{C}$ is called an **entire** function.

As with real valued functions:

Theorem: If f(z) has a derivative at a point z_0 , then f(z) is continuous at z_0 .

Proof:
$$\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \left[\left(\frac{f(z) - f(z_0)}{z - z_0} \right) (z - z_0) \right]$$
$$= f'(z_0) \lim_{z \to z_0} (z - z_0) \right]$$
$$= 0.$$
$$\Rightarrow \qquad \lim_{z \to z_0} f(z) = f(z_0).$$
So $f(z)$ is continuous at z_0 .

Thus differentiable at z_0 implies continuous at z_0 , but continuous at z_0 does not imply differentiable at z_0 .

Ex. Prove that $f(z) = \overline{z}$ is continuous everywhere, but not differentiable anywhere.

To prove $f(z) = \overline{z}$ is continuous everywhere we must show that for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $|z - z_0| < \delta$ then $|\overline{z} - \overline{z_0}| < \epsilon$. Since $|w| = |\overline{w}|$ $|z - z_0| = |\overline{z - z_0}| = |\overline{z} - \overline{z_0}|$, so choose $\delta = \epsilon$. Then $|z - z_0| < \delta = \epsilon$. But $|z - z_0| = |\overline{z} - \overline{z_0}|$ so $|\overline{z} - \overline{z_0}| < \epsilon$. Thus $f(z) = \overline{z}$ is continuous everywhere. Now let's show that $f'(z_0) = \lim_{h \to 0} \frac{f(z_0+h) - f(z_0)}{h}$ doesn't exist for any z_0 .

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{\overline{z_0 + h} - \overline{z_0}}{h} = \lim_{h \to 0} \frac{\overline{h}}{h}.$$

If we let h approach 0 along the real axis, that is h = x, $x \in \mathbb{R}$, then $\overline{h} = h$. Thus $\lim_{h \to 0} \frac{\overline{h}}{h} = \lim_{h \to 0} \frac{h}{h} = 1$ along that path.

If we let h approach 0 along the imaginary axis, that is h = yi, $y \in \mathbb{R}$, then $\overline{h} = -h$.

Thus $\lim_{h\to 0} \frac{h}{h} = \lim_{h\to 0} \frac{-h}{h} = -1$ along that path.

Hence $\lim_{h \to 0} \frac{f(z_0+h)-f(z_0)}{h}$ doesn't exist because we get different values with different paths as h goes to 0.

Thus $f(z) = \overline{z}$ is not differentiable anywhere.

Theorem: Let f(z) = c, g(z) = z, then

a. f'(z) = 0b. g'(z) = 1

This follows directly from the definition of a derivative.

As with functions of one real variable we have the following differentiation rules: Theorem: Let w = f(z) and w = g(z) be differentiable at $z \in \mathbb{C}$, then

1.
$$(f(z) \pm g(z))' = f'(z) \pm g'(z)$$

2. $(f(z)g(z))' = f(z)g'(z) + g(z)f'(z)$ (product rule)
3. $(\frac{f(z)}{g(z)})' = \frac{g(z)f'(z) - f(z)g'(z)}{(g(z))^2}$ (quotient rule).

Theorem (chain rule): If f(z) is differentiable in a neighborhood of $z_0 \in D$, and g(z) is differentiable in a neighborhood of $f(z_0)$ and w = g(f(z)) then

$$\frac{dw}{dz} = g'(f(z_0))f'(z_0).$$

Ex. If
$$w = (2z^3 + z + 1)^{10}$$
 then $\frac{dw}{dz} = 10(2z^3 + z + 1)^9(6z^2 + 1)$.

Theorem: if $f(z) = e^{z}$, then $f'(z) = e^{z}$.

Proof:
$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$
$$= \lim_{h \to 0} \frac{e^{(z+h)} - e^z}{h}$$
$$= \lim_{h \to 0} \frac{e^z(e^h - 1)}{h} .$$

$$e^{h} = 1 + h + \frac{h^{2}}{2!} + \frac{h^{3}}{3!} + \cdots;$$
 so
 $e^{h} - 1 = h + \frac{h^{2}}{2!} + \frac{h^{3}}{3!} + \cdots = h(1 + \frac{h}{2!} + \frac{h^{2}}{3!} + \cdots)$

$$f'(z) = \lim_{h \to 0} \frac{e^{z}(e^{h} - 1)}{h}$$
$$= e^{z} \lim_{h \to 0} \frac{h(1 + \frac{h}{2!} + \frac{h^{2}}{3!} + \cdots)}{h}$$
$$= e^{z}.$$

Note: We are "cheating" a bit here because we don't know yet that the above power series calculations are "legitimate".

Since trig functions and hyperbolic functions are defined in terms of the function e^{z} , we can now find their derivatives using the derivative rules.

Theorem: $(\sin(z))' = \cos z$, $(\cos(z))' = -\sin z$.

Proof:
$$\frac{d}{dz}(sinz) = \frac{d}{dz}\left(\frac{e^{iz}-e^{-iz}}{2i}\right)$$
$$= \frac{1}{2i}\left(ie^{iz}+ie^{-iz}\right)$$
$$= \frac{e^{iz}+e^{-iz}}{2} = cosz.$$

$$\frac{d}{dz}(cosz) = \frac{d}{dz} \left(\frac{e^{iz} + e^{-iz}}{2}\right)$$
$$= \frac{1}{2} \left(ie^{iz} - ie^{-iz}\right)$$
$$= -\frac{e^{iz} - e^{-iz}}{2i} = -sinz .$$

Since $(\sin(z))' = \cos z$, $(\cos(z))' = -\sin z$, we can get the derivatives of the other trig functions using the derivative rules:

$$\frac{d}{dz}(tanz) = sec^{2}z, \qquad \qquad \frac{d}{dz}(cscz) = -(cscz)(cotz),$$
$$\frac{d}{dz}(cotz) = -csc^{2}z \qquad \qquad \frac{d}{dz}(secz) = (secz)(tanz).$$

Given that
$$sinh(z) = \frac{e^{z} - e^{-z}}{2}$$
 and $cosh(z) = \frac{e^{z} + e^{-z}}{2}$:
 $\frac{d}{dz}(sinh(z)) = \frac{d}{dz}\left(\frac{e^{z} - e^{-z}}{2}\right) = \frac{e^{z} + e^{-z}}{2} = cosh(z)$
 $\frac{d}{dz}(cosh(z)) = \frac{d}{dz}\left(\frac{e^{z} + e^{-z}}{2}\right) = \frac{e^{z} - e^{-z}}{2} = sinh(z).$

We can now use the derivative rules to find:

$$\frac{d}{dz}(\tanh(z)) = \operatorname{sech}^2(z) \qquad \frac{d}{dz}(\operatorname{csch}(z)) = -(\operatorname{csch}(z))(\operatorname{coth}(z))$$
$$\frac{d}{dz}(\operatorname{coth}(z)) = -\operatorname{csch}^2(z) \qquad \frac{d}{dz}(\operatorname{sech}(z)) = -(\operatorname{sech}(z))(\tanh(z)).$$

Ex. Where are the following functions differentiable?

a.
$$\frac{z+2}{z^2+9}$$
 b. secz

a. The derivative of $R(z) = \frac{P(z)}{Q(z)}$, is defined for all z such that $Q(z) \neq 0$. In this case, where $z^2 + 9 \neq 0$. $z^2 + 9 = 0$ (z + 3i)(z - 3i) = 0 $z = \pm 3i$

So $\frac{z+2}{z^2+9}$ is differentiable for all $z \in \mathbb{C}$ such that $z \neq \pm 3i$.

b.
$$secz = \frac{1}{cosz} = \frac{1}{\frac{e^{iz} + e^{-iz}}{2}} = \frac{2}{e^{iz} + e^{-iz}}$$

So the domain of $secz$ is all $z \in \mathbb{C}$ such that $e^{iz} + e^{-iz} \neq 0$
 $e^{iz} + e^{-iz} = 0$
 $e^{2iz} + 1 = 0$
 $e^{2iz} = -1 = e^{(\pi i + 2\pi n i)}, \quad n = 0, \pm 1, \pm 2, ...$
 $2iz = (2n + 1)\pi i$
 $z = \frac{(2n+1)}{2}\pi, \quad n = 0, \pm 1, \pm 2, ...$

So the domain of *secz* is all $z \in \mathbb{C}$ such that $z \neq \frac{(2n+1)}{2}\pi$, $n = 0, \pm 1, \pm 2, ...$. We also know that $\frac{d}{dz}(secz) = (secz)(tanz)$. This is defined for all z such that $cosz \neq 0$ (the same domain as secz). So the derivative of secz exists for all $z \in \mathbb{C}$ such that $z \neq \frac{(2n+1)}{2}\pi$, $n = 0, \pm 1, \pm 2, ...$