Limits and Continuity

Def. We say $w = f(z)$ is a **complex valued function** (or a complex function) of a complex variable Z with a **domain** D and **range** R if D and R are nonempty subsets of $\mathbb C$, and for each point $z \in D$ there corresponds at least one point $w \in R$, and for each point $w \in R$ there is at least one point $z \in D$.

If no two points of R correspond to the same $z \in D$, we say $f(z)$ is **singlevalued.**

Notice that unlike functions defined in elementary math, we are allowing a point in the domain to get mapped to 2 or more points in the range. If this happens we say that $f(z)$ is a **multi-valued function.**

A complex function $w = f(z)$ can also be written in the form:

$$
w = f(z) = u(x, y) + iv(x, y)
$$

where $u(x, y)$ and $v(x, y)$ are real valued functions of real variables.

Ex. Write $f(z) = z^2 + 2z + 3$ as $f(z) = u(x, y) + iv(x, y)$.

$$
f(z) = (x + iy)^2 + 2(x + iy) + 3
$$

= $(x^2 + 2xyi + i^2y^2) + (2x + 2yi) + 3$
= $(x^2 - y^2 + 2xyi) + (2x + 2yi) + 3$
= $(x^2 - y^2 + 2x + 3) + (2xy + 2y)i$.

In this case: $u(x, y) = x^2 - y^2 + 2x + 3$ and $v(x, y) = 2xy + 2y$.

Def. A neighborhood of a point z_0 in the complex plane is the set of points z such that $|z - z_0| < \epsilon$, where ϵ is a positive real number.

If
$$
z = x + yi
$$
 and $z_0 = x_0 + y_0i$ then:
\n
$$
|z - z_0| = |(x + yi) - (x_0 + y_0i)|
$$
\n
$$
= |(x - x_0) + (y - y_0)i|
$$
\n
$$
= \sqrt{(x - x_0)^2 + (y - y_0)^2}
$$

So
$$
|z - z_0| < \epsilon
$$
 means
\n $\sqrt{(x - x_0)^2 + (y - y_0)^2} < \epsilon$ or $(x - x_0)^2 + (y - y_0)^2 < \epsilon^2$

Which represents all of the points inside (but not including) the circle in the xy-plane whose center is (x_0, y_0) and whose radius is ϵ .

Def. Let $w = f(z)$ be a single valued function defined in a domain D except possibly at the point $z_0 \in D$. We say $\lim_{z \to \infty}$ $z \rightarrow z_0$ $\pmb{f}(\pmb{z}) = \pmb{w_0}$ if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < |z - z_0| < \delta$ then $|f(z) - w_0| < \epsilon$.

As with real valued functions, the function $f(z)$ need not be defined at $z = z_0$. For a function of one real variable, in order for lim $x \rightarrow x_0$ $f(x) = L$, we need the

value of the function f to approach L from the left (when $x < x_0$) and from the right (when $x > x_0$).

For a real valued function of two real variables, for $(x,y) \rightarrow (a,b)$ $f(x, y) = L$, we needed the limit from every direction to exist and be equal to L as (x, y) approches (a, b) .

For a function of one complex variable, for lim $z \rightarrow z_0$ $f(z) = w_0$, we also need the limit to exist and be equal to W_0 , as Z approaches Z_0 from all directions.

Def. lim $\lim_{z\to\infty}f(z)=w_0$ if for every $\epsilon>0$ there exists a $\delta>0$ such that if $|z| > \frac{1}{s}$ $\frac{1}{\delta}$ then $|f(z) - w_0| < \epsilon$. (This is the same as $\lim_{w \to 0} f\big(\frac{1}{w}\big)$ $\frac{1}{w}$ = w_0 .)

Ex. Show that
$$
\lim_{z \to \infty} \frac{1}{z} = 0
$$
.

Start with the epsilon statement: $\left| \frac{1}{2} \right|$ $\left|\frac{1}{z} - 0\right| < \epsilon \Leftrightarrow |z| > \frac{1}{\epsilon}$ $\frac{1}{\epsilon}$.

Choose $\delta = \epsilon$

So
$$
|z| > \frac{1}{\delta} = \frac{1}{\epsilon}
$$

\n
$$
\left|\frac{1}{z}\right| < \epsilon \implies \left|\frac{1}{z} - 0\right| < \epsilon.
$$
\nThus $\lim_{z \to \infty} \frac{1}{z} = 0$.

All of the standard properties of limits for functions of a real variable hold for $w = f(z)$.

Theorem: If lim $z \rightarrow z_0$ $f(z) = w_0$ and $\lim_{z \to z_0}$ $z \rightarrow z_0$ $g(z) = w_1$ then

- 1. lim $z \rightarrow z_0$ $(f(z) + g(z)) = w_0 + w_1$
- 2. lim $z \rightarrow z_0$ $(f(z) - g(z)) = w_0 - w_1$
- 3. lim $z \rightarrow z_0$ $(f(z)g(z)) = w_0 w_1$
- 4. lim $z \rightarrow z_0$ $f(z)$ $\frac{f(z)}{g(z)} = \frac{w_0}{w_1}$ $\frac{w_0}{w_1}$; as long as $w_1 \neq 0$.

It's easy to show with a δ/ϵ proof that $\,$ lim $z \rightarrow z_0$ $(az + b) = az_0 + b$ for all $a, b, z_0 \in \mathbb{C}$. Thus it follows from the previous theorem that:

lim $z \rightarrow z_0$ $(a_0 + a_1 z + \dots + a_n z^n) = a_0 + a_1 z_0 + \dots + a_n (z_0)^n$. So for any

polynomial $P(z) = a_0 + a_1 z + \dots + a_n z^n$; $\lim_{z \to z}$ $z \rightarrow z_0$ $P(z) = P(z_0).$

It also follows from the limit theorem that for any rational function

$$
R(z) = \frac{P(z)}{Q(z)}
$$
 (where $P(z)$ and $Q(z)$ are polynomials) $\lim_{z \to z_0} R(z) = R(z_0)$ as long as $Q(z_0) \neq 0$.

Thus for polynomials and rational functions where $Q(z_0) \neq 0$, we can evaluate limits by just plugging in the point z_0 into the function.

Ex. Evaluate
$$
\lim_{z \to i+1} \frac{z^2}{z-1}
$$
.
\n
$$
\lim_{z \to i+1} \frac{z^2}{z-1} = \frac{(i+1)^2}{(i+1)-1} = \frac{1+2i+i^2}{i} = \frac{2i}{i} = 2.
$$

Ex. Evaluate lim →∞ z^2 $\frac{2}{1-2z^2}$.

To evaluate lim →∞ z^2 $\frac{z^2}{1-2z^2}$, make a substitution $z=\frac{1}{w}$ $\frac{1}{w}$ and take the limit as $w \rightarrow 0$.

$$
\lim_{z \to \infty} \frac{z^2}{1 - 2z^2} = \lim_{w \to 0} \frac{(\frac{1}{w})^2}{1 - 2(\frac{1}{w})^2} = \lim_{w \to 0} \frac{\frac{1}{w^2}}{1 - \frac{2}{w^2}}
$$

$$
= \lim_{w \to 0} \frac{\frac{1}{w^2}}{1 - \frac{2}{w^2}} \left(\frac{w^2}{w^2}\right) = \lim_{w \to 0} \frac{1}{w^2 - 2} = -\frac{1}{2}.
$$

Continuity

Def. Let $w = f(z)$ be defined in a domain $D \subseteq \mathbb{C}$. We say $f(z)$ is continuous **at** $z_0 \in D$ if $\lim_{z \to \overline{z}}$ $z \rightarrow z_0$ $f(z) = f(z_0).$

As with real valued functions, in order for a function $w = f(z)$ to be continuous at $z = z_0$, three things must hold:

- 1. $f(z_0)$ must be defined
- 2. lim $z \rightarrow z_0$ $f(\pmb{z})$ must exist
- 3. lim $z \rightarrow z_0$ $f(z) = f(z_0)$

If $f(z)$ is continuous at every point $z \in D \subseteq \mathbb{C}$, we say $f(z)$ is **continuous on** \bm{D} .

As with real valued functions, the following theorem follows from our earlier limit theorem.

Theorem: If $f(z)$ and $g(z)$ are continuous at $z_0 \in D$ then

1.
$$
f(z) + g(z)
$$

\n2.
$$
f(z) - g(z)
$$

\n3.
$$
f(z)g(z)
$$

\n4.
$$
\frac{f(z)}{g(z)}, g(z_0) \neq 0
$$

are all continuous at z_{0} .

It also follows that polynomials, $P(z)$, and rational functions, $R(z) = \frac{P(z)}{Q(z)}$ $\frac{f(z)}{Q(z)}$, $Q(z_0) \neq 0$, are continuous at any point $z_0 \in D$.