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                                        Elementary Functions 

 

For 𝑥 ∈ ℝ,  we can define 𝑦 = 𝑒𝑥   by: 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑛

𝑛!
+ ⋯ . 

From one variable Calculus we know that this converges for all  𝑥 ∈ ℝ.  

 

We can extend this definition to 𝑒𝑖𝑥,  𝑥 ∈ ℝ  by 

𝑒𝑖𝑥 = 1 + (𝑖𝑥) +
(𝑖𝑥)2

2!
+

(𝑖𝑥)3

3!
+ ⋯ +

(𝑖𝑥)𝑛

𝑛!
+ ⋯ . 

 

     This definition is not “legitimate” because we haven’t talked about 

convergence of a series in ℂ yet (but we will), but we will use this definition for 

now.   

We saw earlier that: 

𝑒𝑖𝑥 = (1 −
𝑥2

2!
+

𝑥4

4!
+ ⋯ ) + 𝑖 (𝑥 −

𝑥3

3!
+

𝑥5

5!
+ ⋯ )  = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥. 

 

In order to define 𝑒𝑧,  for 𝑧 ∈ ℂ we want to make sure that the usual exponent 

rules still hold:    𝑒(𝑎+𝑏) = 𝑒𝑎 ∙ 𝑒𝑏, 𝑒𝑡𝑐..  This leads us to define 𝑒𝑧 by:  

 

                   𝑒𝑧 = 𝑒(𝑥+𝑖𝑦)=𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦).  

 

This definition agrees with the definition of 𝑒𝑥 when 𝑥 ∈ ℝ, (i.e. when 𝑦 = 0) 

and 𝑒𝑖𝑦 ,  𝑦 ∈ ℝ, (i.e. when 𝑥 = 0).  
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Notice that with this definition: 

1. 𝑒𝑧 ≠ 0  for any 𝑧 ∈ ℂ 

2. |𝑒𝑧| = |𝑒(𝑥+𝑖𝑦)|=𝑒𝑥 > 0,    since  |𝑒𝑖𝑦| = 1 

3. 𝑒
𝜋𝑖

2 = 𝑖,   𝑒𝜋𝑖 = −1,    𝑒
3𝜋𝑖

2 = −𝑖,   𝑒2𝜋𝑖 = 1 

4. 𝑒𝑧 = 1 if and only if 𝑧 = 2𝜋𝑖𝑛,  where 𝑛 is an integer. 

 

Proof:   1&2,     

       𝑒𝑧 = 𝑒(𝑥+𝑖𝑦)=𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦)  thus 

|𝑒𝑧|2 = (𝑒𝑧)(𝑒𝑧̅̅ ̅) = ( 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦))(  𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑖𝑠𝑖𝑛𝑦))   

            = 𝑒2𝑥 (𝑐𝑜𝑠2𝑦 + 𝑠𝑖𝑛2𝑦) = 𝑒2𝑥 > 0.   

  So we have: 

   |𝑒𝑧| = |𝑒(𝑥+𝑖𝑦)|=𝑒𝑥 > 0 and 𝑒𝑧 ≠ 0  for any 𝑧 ∈ ℂ.  

 

For 3  just plug into the formula:   𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥. 

 

For 4:  𝑒𝑧 = 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦) = 1   ⟹ 𝑠𝑖𝑛𝑦 = 0  and  𝑒𝑥𝑐𝑜𝑠𝑦 = 1.  

 

             But 𝑠𝑖𝑛𝑦 = 0 means  𝑐𝑜𝑠𝑦 = ±1.   

 

   

             Since 𝑒𝑥 > 0  for 𝑥 ∈ ℝ,   

             𝑒𝑥𝑐𝑜𝑠𝑦 = 1  implies that 𝑐𝑜𝑠𝑦 = 1 and 𝑒𝑥 = 1.  

    

              Thus 𝑥 = 0,   and  𝑦 = 2𝜋𝑛,  where 𝑛 is an integer.     
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Since if  𝑥 ∈ ℝ,   |𝑒𝑖𝑥| = |𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥| = 1, it means that 𝑒𝑖𝑥 lies on the 

unit circle for all real values of 𝑥.  At  𝑥 = 0,  𝑒𝑖𝑥 = 𝑒0 = 1.  As 𝑥 moves from 

0 to 2𝜋,  𝑒𝑖𝑥  moves counterclockwise around the unit circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definitions of Trig functions of complex numbers 

We know that: 

𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥 ,      and     𝑒−𝑖𝑥 = 𝑐𝑜𝑠𝑥 − 𝑖𝑠𝑖𝑛𝑥 ,    thus by adding the 

equations and dividing by 2 we get: 

                             𝑐𝑜𝑠𝑥 =
𝑒𝑖𝑥+𝑒−𝑖𝑥

2
 .   

 

 

If we subtract the 2 equations and divide by 2𝑖 we get: 

                                    𝑠𝑖𝑛𝑥 =
𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
 .   

 

 

This gives us a natural way to define 𝑠𝑖𝑛𝑧 and 𝑐𝑜𝑠𝑧 for 𝑧 ∈ ℂ: 
 

                          𝑐𝑜𝑠𝑧 =
𝑒𝑖𝑧+𝑒−𝑖𝑧

2
   and    𝑠𝑖𝑛𝑧 =

𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
 . 

 

1 

𝑖 

−1 

−𝑖 
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It’s easy to check that the usual trig relationships hold with this definition.  For 

example: 

𝑠𝑖𝑛2𝑧 + 𝑐𝑜𝑠2𝑧 = (
𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖
)2 + (

𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2
)2 

                                                         = (
𝑒2𝑖𝑧−2+𝑒−2𝑖𝑧

−4
) + (

𝑒2𝑖𝑧+2+𝑒−2𝑖𝑧

4
) 

                                                         = 1.  

 

 

Ex.   Find the values of sin(𝑖)  and cos(𝑖).  
 

                  sin(𝑖) =
𝑒𝑖(𝑖)−𝑒−𝑖(𝑖)

2𝑖
=

𝑒𝑖2
−𝑒−(𝑖)2

2𝑖
 

                          =
𝑒−1−𝑒1

2𝑖
= −𝑖

(𝑒−1−𝑒)

2
        (which is purely imaginary).  

 

 

              cos(𝑖) =
𝑒𝑖(𝑖)+𝑒−𝑖(𝑖)

2
=

𝑒𝑖2
+𝑒−(𝑖)2

2
 

                          =
𝑒−1+𝑒1

2
=

(𝑒−1+𝑒)

2
              (which is real).  

 
 

 

 

Note:  A very familiar inequalitiy concerning the value of the sine and cosine of a 

real number, namely: 

                           |𝑠𝑖𝑛𝑥| ≤1    and    |𝑐𝑜𝑠𝑥| ≤ 1  for all real numbers 𝑥 

does NOT hold for the sine and cosine of complex numbers.  For example: 

 

|cos (−100𝑖)| = |
𝑒𝑖(−100𝑖)+𝑒𝑖(100𝑖)

2
| = |

𝑒100+𝑒−100

2
|     which is a very large.  

 

|sin (−100𝑖)| = |
𝑒𝑖(−100𝑖)−𝑒𝑖(100𝑖)

2𝑖
| = |

𝑒100−𝑒−100

2
|       is also a very large.  
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We can now define the other four trig functions in terms of 𝑠𝑖𝑛𝑧 and 𝑐𝑜𝑠𝑧. 

 

𝑡𝑎𝑛𝑧 =
𝑠𝑖𝑛𝑧

𝑐𝑜𝑠𝑧
;         𝑐𝑠𝑐𝑧 =

1

𝑠𝑖𝑛𝑧
;         𝑠𝑒𝑐𝑧 =

1

𝑐𝑜𝑠𝑧
;         𝑐𝑜𝑡𝑧 =

𝑐𝑜𝑠𝑧

𝑠𝑖𝑛𝑧
=

1

𝑡𝑎𝑛𝑧
 .  

 

 

Definitions of Hyperbolic Functions 

For all real numbers 𝑥 ∈ ℝ we have: 

𝑠𝑖𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

2
    

𝑐𝑜𝑠ℎ(𝑥) =
𝑒𝑥+𝑒−𝑥

2
  .     

 

We can now extend these definitions to 𝑧 ∈ ℂ by 

𝑠𝑖𝑛ℎ(𝑧) =
𝑒𝑧−𝑒−𝑧

2
    

𝑐𝑜𝑠ℎ(𝑧) =
𝑒𝑧+𝑒−𝑧

2
  .   

 

 

Again the usual identities hold for all 𝑧 ∈ ℂ.  For example: 

𝑐𝑜𝑠ℎ2(𝑧) − 𝑠𝑖𝑛ℎ2(𝑧) = 1  

(
𝑒𝑧+𝑒−𝑧

2
)2 − (

𝑒𝑧−𝑒−𝑧

2
)

2

= (
𝑒2𝑧+2+𝑒−2𝑧

4
) − (

𝑒2𝑧−2+𝑒−2𝑧

4
) = 1. 
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We define the other four hyperbolic functions from 𝑠𝑖𝑛ℎ(𝑧) and 𝑐𝑜𝑠ℎ(𝑧): 

            tanh(𝑧) = 
sinh(𝑧)

cosh(𝑧)
             csch(𝑧) =

1

sinh(𝑧)
         

            coth(𝑧) =
cosh(𝑧)

sinh(𝑧)
              sech(𝑧) =

1

cosh(𝑧)
  .     

 

 

There are relationships between trig functions and hyperbolic functions. 

Theorem:     sin(𝑖𝑥) = (𝑖) sinh(𝑥)       for 𝑥 ∈ ℝ 

                      cos(𝑖𝑥) = cosh(𝑥)            for 𝑥 ∈ ℝ. 

 

Proof:       sin(𝑖𝑥) =
𝑒𝑖(𝑖𝑥)−𝑒−𝑖(𝑖𝑥)

2𝑖
=

𝑒−𝑥−𝑒𝑥

2𝑖
= 𝑖 (

𝑒𝑥−𝑒−𝑥

2
) = (𝑖)sinh(𝑥)     

 

                  cos(𝑖𝑥) =
𝑒𝑖(𝑖𝑥)+𝑒−𝑖(𝑖𝑥)

2
=

𝑒−𝑥+𝑒𝑥

2
= cosh(𝑥).   
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Power Series Representations 

Given a power series representation for a function 𝑓(𝑧) about a point 𝑧 = 𝑧0: 

                                       𝑓(𝑧) = ∑ 𝑎𝑗(𝑧 − 𝑧0)𝑗 ;           𝑎𝑗, 𝑧0 ∈ ℂ∞
𝑗=0  

we can ask where the power series converges.  We establish for what values of 𝑧 

a power series converges via the ratio test (as was done in single variable 

Calculus).  The power series converges for all values of 𝑧 where: 

                                       lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| |𝑧 − 𝑧0| < 1. 

That is, it converges inside the circle |𝑧 − 𝑧0| = 𝑅,  where 

                                        𝑅 =Radius of convergence= lim
𝑛→∞

|
𝑎𝑛

𝑎𝑛+1
|. 

We can derive power series expansions for 𝑠𝑖𝑛𝑧, 𝑐𝑜𝑠𝑧,  sinh(𝑧), and cosh(𝑧) 

from the power series for 𝑒𝑧.  

 

Ex.  Find a power series expansion for 𝑓(𝑧) = 𝑐𝑜𝑠𝑧 and determine for which 

values of 𝑧 it converges.  Based on this, where does the power series for 𝑐𝑜𝑠4𝑧 

and sec(𝑧) converge.   

𝑓(𝑧) = 𝑐𝑜𝑠𝑧 = 
𝑒𝑖𝑧+𝑒−𝑖𝑧

2
=

1

2
[∑

(𝑖𝑧)𝑗

𝑗!
+ ∑

(−𝑖𝑧)𝑗

𝑗!
]∞

𝑗=0
∞
𝑗=0  

          =
1

2
∑

((𝑖)𝑗+(−𝑖)𝑗)𝑧𝑗

𝑗!
∞
𝑗=0 =

1

2
∑

(1+(−1)𝑗)𝑖𝑗𝑧𝑗

𝑗!
∞
𝑗=0  

         1 + (−1)𝑗 = 0       if 𝑗 is odd 

                                = 2        if 𝑗 is even. 

                    ⟹    𝑐𝑜𝑠𝑧 = ∑
(−1)

𝑗
𝑧2𝑗

(2𝑗)!
∞
𝑗=0 = 1 −

𝑧2

2!
+

𝑧4

4!
−

𝑧6

6!
+ ⋯.   
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Radius of  convergence = lim
𝑛→∞

|
𝑎𝑛

𝑎𝑛+1
|. 

                 lim
𝑛→∞

|
𝑎𝑛

𝑎𝑛+1
| = lim

𝑛→∞
|
(−1)

𝑛

(2𝑛)!

(2𝑛+2)!

(−1)
𝑛+1|    

                                     = lim
𝑛→∞

|(2𝑛 + 2)(2𝑛 + 1)| = ∞. 

So the radius of convergence is ∞, thus the power series for 𝑓(𝑧) = 𝑐𝑜𝑠𝑧 

converges for all 𝑧 ∈ ℂ.   

Notice that the power series for 𝑐𝑜𝑠𝑧 looks very similar to the power series for 

𝑐𝑜𝑠𝑥, when 𝑥 is a real number. 

Since the power series for 𝑓(𝑧) = 𝑐𝑜𝑠𝑧 converges for all 𝑧 ∈ ℂ, so does the 

power series for 𝑔(𝑧) = 𝑐𝑜𝑠4𝑧, since you can get that series by multiplying the 

series for 𝑐𝑜𝑠𝑧 by itself 4 times. 

The power series for ℎ(𝑧) = 𝑠𝑒𝑐𝑧 =
1

𝑐𝑜𝑠𝑧
 converges everywhere the series for 

𝑐𝑜𝑠𝑧 does except where 𝑐𝑜𝑠𝑧 = 0.  Thus the power series for 𝑠𝑒𝑐𝑧 converges 

for all 𝑧 ∈ ℂ except when 𝑧 =
𝜋

2
+ 𝑛𝜋,  𝑛 ∈ ℤ. 

 

Ex.  Find a power series representation for  𝑓(𝑧) =
𝑐𝑜𝑠𝑧−1

𝑧2  .    

 

𝑐𝑜𝑠𝑧 = ∑
(−1)𝑗𝑧2𝑗

(2𝑗)!
∞
𝑗=0 = 1 −

𝑧2

2!
+

𝑧4

4!
−

𝑧6

6!
+ ⋯ +

(−1)𝑗𝑧2𝑗

(2𝑗)!
+ ⋯ 

𝑐𝑜𝑠𝑧−1

𝑧2 =
−

𝑧2

2!
+

𝑧4

4!
−

𝑧6

6!
+⋯+

(−1)𝑗𝑧2𝑗

(2𝑗)!
+⋯ 

𝑧2   

          = −
1

2!
+

𝑧2

4!
−

𝑧4

6!
+ ⋯ +

(−1)𝑗𝑧2𝑗−2

(2𝑗)!
+ ⋯ =  ∑

(−1)𝑗𝑧(2𝑗−2)

(2𝑗)!
∞
𝑗=1  .  
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Ex.  Find a power series for sinh(𝑧) and determine its radius of convergence. 

 

sinh(𝑧) = 
𝑒𝑧−𝑒−𝑧

2
 

            =
1

2
[∑

𝑧𝑛

𝑛!
− ∑

(−𝑧)𝑛

𝑛!
∞
𝑛=0

∞
𝑛=0 ] 

            =
1

2
[(1 + 𝑧 +

𝑧2

2!
+

𝑧3

3!
+

𝑧4

4!
+ ⋯ )                                                

                                                        − (1 − 𝑧 +
𝑧2

2!
−

𝑧3

3!
+

𝑧4

4!
− ⋯ )] 

            =
1

2
[2𝑧 +

2𝑧3

3!
+

2𝑧5

5!
+

2𝑧7

7!
+ ⋯ +

2𝑧2𝑗+1

(2𝑗+1)!
+ ⋯ ] 

             = 𝑧 +
𝑧3

3!
+

𝑧5

5!
+

𝑧7

7!
+ ⋯ +

𝑧2𝑗+1

(2𝑗+1)!
+ ⋯ 

              = ∑
𝑧2𝑗+1

(2𝑗+1)!
∞
𝑗=0  

 

    𝑅 = lim
𝑛→∞

|
𝑎𝑛

𝑎𝑛+1
| = lim

𝑛→∞
|

(2𝑛+3)!

(2𝑛+1)!
| = lim

𝑛→∞
(2𝑛 + 3)(2𝑛 + 2) = ∞ 

    So the radius of convergence is ∞ thus the series converges for all 𝑧 ∈ ℂ. 

    


