An Application of Fourier Transforms to Partial Differential Equations

Fourier transforms can be very useful in solving some partial differential
equations.

Ex. Solve for the bounded solution, @ (X, y), of Laplace’s equation
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for —oo < x < o0, y > 0, with the boundary condition @ (x, 0) = h(x),
wheref |h(x)|dx < oo andf |h(x)|?dx < oo.

We start by taking the Fourier Transform of Laplace’s equation with respect to x.

We know that: f/(?‘)(k) = (ik)"f(k) so

924 ~
- (k,y) = —k*@(k, y).
ﬁ _ (® az_‘p —ikx _ 6_2 o —ikx
2 (k' y) - f_oo 9y?2 (x' :V)e dx = 9y?2 f_oo QD(X, y)e dx

= 22(k,y).

0%2¢p = 0%¢
Thus: 52 + 9z = —k?® (k y) -I- (k y) = 0.



If k is constant, the above equation is just an ordinary differential equation in y.

From elementary differential equations we know that the solutions of:
f"(t) —k?f(t) =0; wherekisaconstantis
f(t) = Ae*t + Be*t,

So in our case the general solution to:
0%® —~
52 oY) —Kpley) =0 s
o(k,y) = A(k)e™ + B(k)e™*.

We want to find a soution, @ (X, y), to Laplace’s equation that is bounded
so @ (k,y) must be bounded. In order for

?(k,y) = A(k)e™ + B(k)e ™™  to be bounded we need
A(k) =0fork >0 and B(k) =0 fork <O0.

Thus we can rewrite ¢ (k, y) as

@Ue,y) = D()e k.

Since the boundary condition is @ (x, 0) = h(x) we have:
ok, y) = [ o, y)e ®dx; so
& (k,0) = ffooocp(x, 0)e **dx = ffoooh(x)e‘ikxdx = h(k).

Pluggingy = Ointo @ (k,y) = D(k)e kY e get
@(k,0) = D(k) = h(k).



So now we know that @ (k, y) satisfies:

p(k,y) = h(kye k.

However, if flx,y) = _(x2+ 5), then f(k y) = e lkly

Thus o(k,y) = h(k)f(k; y).

Now to find ¢ (X, y) we use the Convolution Theorem:

if @=hxf=nhf then p(x,y) = h(x) * f(x,¥).

So we have:

@(x,y) = h(x) * f(x,y) = —f_oo (m) h(wdu.

If h(x) is a Dirac delta function: h(x) = §(x — w), then the solution becomes

px,y) = _f (m) 6(u—w)du
o(x,y) = - (m) (since [ f(x)8(x —w)dx = f(w)).

G(x—wy)—-(

———=——=) is called a Green’s Function.

Green’s functions are solutions to differential equations with a delta function
as the boundary value. If you have the Green’s function for a differential

equation you can construct a solution for a general boundary value, h(x), by

e(x,y) = [ h(W)G(x — w,y)dw.



Ex. Solve the time dependent (i.e. not steady state) heat flow problem given by
10, 9%
ot (x; t) - 9x2 (x) t);

with boundary condition ¢ (x, 0) = h(x).

First let’s find the Green’s function for this equation. Thus @ (x, 0) = 6 (x — w).

Take the Fourier transform of the partial differential equation with respect to x.
o= (k1) = —k=*@(k, t)

ag _ 3@K,t)
at (k,t) = at

o 2OLD) - K2k, 0.
If k is constant then this is an ordinary differential equation in t.
Thus the solutionis:  @(k,t) = @(k, O)B_kzt
(This is from first year Calculus: if f'(t) = —k?f(t); then
f@®) = F0)e™0),

&(k,0) = fjooocp(x, 0)e HXdx = fjooo S(x —w)e HKxXdy = g~tkw

So ok, t) = @(k,0)e Kt = g=tkwg=k*t



Now take the inverse Fourier transform of (ﬁ(k, t), and thatis G(x — w, t).
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Glx —w,t) = %fjoooe tkw o—k“t pikx )k
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_ eik(x—w)—kztdk_
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Now complete the square in the numerator.
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—k%*t +i(x —w)k = —t(k* — 2

i(x—w))z _ (x—w)?2

—t(k — 2t 4t

(x—w)2 l(x w)
1 _X=w= o (lr—
So Gx—w,t)=_—e & [ gtk )dk
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Now using the fact that f_oo e tWdu = ﬁ we get
1 (x—W)2
— = 4
G(x —w,t) = PN t

Now that we have the Green’s function G (x — w, t), we can solve the partial

differential equation for a given boundary function (p(x, 0) = h(x).
o(x,t) = [°. h(W)G(x —w,t)dw

X—W 2

p(x,t) = \/—f h(w)e™ 4 dw.



