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          An Application of Fourier Transforms to Partial Differential Equations 

 

     Fourier transforms can be very useful in solving some partial differential 

equations. 

 

Ex.    Solve for the bounded solution, 𝜑(𝑥, 𝑦), of Laplace’s equation 

                                              
𝜕2𝜑

𝜕𝑥2 +
𝜕2𝜑

𝜕𝑦2 = 0 

for −∞ < 𝑥 < ∞,  𝑦 > 0, with the boundary condition 𝜑(𝑥, 0) = ℎ(𝑥),      

where ∫ |ℎ(𝑥)|𝑑𝑥 < ∞
∞

−∞
 and ∫ |ℎ(𝑥)|2𝑑𝑥 < ∞

∞

−∞
. 

 

We start by taking the Fourier Transform of Laplace’s equation with respect to 𝑥. 

We know that:              𝑓(𝑛)̂ (𝑘) = (𝑖𝑘)𝑛𝑓(𝑘)       so  

 

𝜕2𝜑

𝜕𝑥2

̂
(𝑘, 𝑦) = −𝑘2�̂�(𝑘, 𝑦).  

 

 
𝜕2𝜑

𝜕𝑦2

̂
(𝑘, 𝑦) = ∫

𝜕2𝜑

𝜕𝑦2 (𝑥, 𝑦)𝑒−𝑖𝑘𝑥𝑑𝑥
∞

−∞
=

𝜕2

𝜕𝑦2 ∫ 𝜑(𝑥, 𝑦)𝑒−𝑖𝑘𝑥𝑑𝑥
∞

−∞
  

                    =
𝜕2�̂�

𝜕𝑦2 (𝑘, 𝑦). 

 

Thus:        
𝜕2𝜑

𝜕𝑥2 +
𝜕2𝜑

𝜕𝑦2

̂
= −𝑘2�̂�(𝑘, 𝑦) +

𝜕2�̂�

𝜕𝑦2
(𝑘, 𝑦) = 0.  
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If 𝑘 is constant, the above equation is just an ordinary differential equation in 𝑦. 

From elementary differential equations we know that the solutions of: 

                            𝑓′′(𝑡) − 𝑘2𝑓(𝑡) = 0;        where 𝑘 is a constant is 

                            𝑓(𝑡) = 𝐴𝑒𝑘𝑡 + 𝐵𝑒−𝑘𝑡.  

 

So in our case the general solution to: 

                          
𝜕2�̂�

𝜕𝑦2
(𝑘, 𝑦) − 𝑘2�̂�(𝑘, 𝑦) = 0       is    

                          �̂�(𝑘, 𝑦) = 𝐴(𝑘)𝑒𝑘𝑦 + 𝐵(𝑘)𝑒−𝑘𝑦.  

 

We want to find a soution, 𝜑(𝑥, 𝑦), to Laplace’s equation that is bounded 

so �̂�(𝑘, 𝑦) must be bounded.  In order for 

                         �̂�(𝑘, 𝑦) = 𝐴(𝑘)𝑒𝑘𝑦 + 𝐵(𝑘)𝑒−𝑘𝑦       to be bounded we need 

𝐴(𝑘) = 0 for 𝑘 > 0    and    𝐵(𝑘) = 0  for 𝑘 < 0.  

 

Thus we can rewrite �̂�(𝑘, 𝑦) as 

                         �̂�(𝑘, 𝑦) = 𝐷(𝑘)𝑒−|𝑘|𝑦.  

 

Since the boundary condition is 𝜑(𝑥, 0) = ℎ(𝑥) we have: 

                        �̂�(𝑘, 𝑦) = ∫ 𝜑(𝑥, 𝑦)𝑒−𝑖𝑘𝑥𝑑𝑥
∞

−∞
 ;      so 

                        �̂�(𝑘, 0) = ∫ 𝜑(𝑥, 0)𝑒−𝑖𝑘𝑥𝑑𝑥 = ∫ ℎ(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥 = ℎ̂(𝑘)
∞

−∞

∞

−∞
.  

 

Plugging 𝑦 = 0 into  �̂�(𝑘, 𝑦) = 𝐷(𝑘)𝑒−|𝑘|𝑦 we get 

                                       �̂�(𝑘, 0) = 𝐷(𝑘) = ℎ̂(𝑘).  
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So now we know that  �̂�(𝑘, 𝑦) satisfies: 

                                     �̂�(𝑘, 𝑦) = ℎ̂(𝑘)𝑒−|𝑘|𝑦.  

 

However, if                𝑓(𝑥, 𝑦) =
1

𝜋
(

𝑦

𝑥2+𝑦2),    then   𝑓(𝑘, 𝑦) = 𝑒−|𝑘|𝑦. 

Thus                            �̂�(𝑘, 𝑦) = ℎ̂(𝑘)𝑓(𝑘, 𝑦).     

 

Now to find 𝜑(𝑥, 𝑦) we use the Convolution Theorem:  

                              if   �̂� = ℎ ∗ �̂� = ℎ̂𝑓  then  𝜑(𝑥, 𝑦) = ℎ(𝑥) ∗ 𝑓(𝑥, 𝑦).  

 

So we have:     

                      𝜑(𝑥, 𝑦) = ℎ(𝑥) ∗ 𝑓(𝑥, 𝑦) =
1

𝜋
∫ (

𝑦

(𝑥−𝑢)2+𝑦2) ℎ(𝑢)𝑑𝑢
∞

−∞
.      

 

If ℎ(𝑥) is a Dirac delta function:  ℎ(𝑥) = 𝛿(𝑥 − 𝑤),  then the solution becomes 

            𝜑(𝑥, 𝑦) =
1

𝜋
∫ (

𝑦

(𝑥−𝑢)2+𝑦2) 𝛿(𝑢 − 𝑤)𝑑𝑢
∞

−∞
 

            𝜑(𝑥, 𝑦) =
1

𝜋
(

𝑦

(𝑥−𝑢)2+𝑦2)       (since ∫ 𝑓(𝑥)𝛿(𝑥 − 𝑤)𝑑𝑥 = 𝑓(𝑤))
∞

−∞
. 

  𝐺(𝑥 − 𝑤, 𝑦) =
1

𝜋
(

𝑦

(𝑥−𝑢)2+𝑦2)   is called a Green’s Function.  

 

     Green’s functions are solutions to differential equations with a delta function 

as the boundary value.  If you have the Green’s function for a differential 

equation you can construct a solution for a general boundary value, ℎ(𝑥), by 

                         𝝋(𝒙, 𝒚) = ∫ 𝒉(𝒘)𝑮(𝒙 − 𝒘, 𝒚)𝒅𝒘
∞

−∞
. 
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Ex.  Solve the time dependent (i.e. not steady state) heat flow problem given by 

                                     
𝜕𝜑

𝜕𝑡
(𝑥, 𝑡) =

𝜕2𝜑

𝜕𝑥2 (𝑥, 𝑡), 

        with boundary condition 𝜑(𝑥, 0) = ℎ(𝑥). 

 

 

First let’s find the Green’s function for this equation. Thus 𝜑(𝑥, 0) = 𝛿(𝑥 − 𝑤).  

 

Take the Fourier transform of the partial differential equation with respect to 𝑥. 

                                   
𝜕2𝜑

𝜕𝑥2

̂
(𝑘, 𝑡) = −𝑘2�̂�(𝑘, 𝑡)  

                                 
𝜕𝜑

𝜕𝑡

̂
(𝑘, 𝑡) =

𝜕(�̂�(𝑘,𝑡))

𝜕𝑡
 

So                                 
𝜕(�̂�(𝑘,𝑡))

𝜕𝑡
= −𝑘2�̂�(𝑘, 𝑡).  

 

If 𝑘 is constant then this is an ordinary differential equation in 𝑡. 

Thus the solution is:        �̂�(𝑘, 𝑡) = �̂�(𝑘, 0)𝑒−𝑘2𝑡 

   (This is from first year Calculus:  if 𝑓′(𝑡) = −𝑘2𝑓(𝑡);   then                        

       𝑓(𝑡) = 𝑓(0)𝑒−𝑘
2

𝑡).   

 

   �̂�(𝑘, 0) = ∫ 𝜑(𝑥, 0)𝑒−𝑖𝑘𝑥𝑑𝑥
∞

−∞
= ∫ 𝛿(𝑥 − 𝑤)𝑒−𝑖𝑘𝑥𝑑𝑥

∞

−∞
= 𝑒−𝑖𝑘𝑤  

  

       So               �̂�(𝑘, 𝑡) = �̂�(𝑘, 0)𝑒−𝑘2𝑡 = 𝑒−𝑖𝑘𝑤𝑒−𝑘2𝑡.     
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Now take the inverse Fourier transform of �̂�(𝑘, 𝑡), and that is 𝐺(𝑥 − 𝑤, 𝑡). 

             𝐺(𝑥 − 𝑤, 𝑡) =
1

2𝜋
∫ 𝑒−𝑖𝑘𝑤𝑒−𝑘2𝑡𝑒𝑖𝑘𝑥dk               

∞
−∞

   

                                  = 
1

2𝜋
∫ 𝑒𝑖𝑘(𝑥−𝑤)−𝑘2𝑡𝑑𝑘.

∞

−∞
 

 

Now complete the square in the numerator. 

−𝑘2𝑡 + 𝑖(𝑥 − 𝑤)𝑘 = −𝑡(𝑘2 −
𝑖(𝑥−𝑤)

𝑡
𝑘 −

(𝑥−𝑤)2

4𝑡2 +
(𝑥−𝑤)2

4𝑡2 )    

                                   = −𝑡(𝑘 −
𝑖(𝑥−𝑤)

2𝑡
)2 −

(𝑥−𝑤)2

4𝑡
 .      

 

So       𝐺(𝑥 − 𝑤, 𝑡) =
1

2𝜋
𝑒−

(𝑥−𝑤)2

4𝑡 ∫ 𝑒−𝑡(𝑘−
𝑖(𝑥−𝑤)

2𝑡
)

2

𝑑𝑘
∞

−∞
.     

 

Now using the fact that ∫ 𝑒−𝑡𝑢2
𝑑𝑢 =

√𝜋

√𝑡

∞

−∞
   we get 

            𝐺(𝑥 − 𝑤, 𝑡) =
1

2√𝜋𝑡
𝑒−

(𝑥−𝑤)2

4𝑡 .     

 

Now that we have the Green’s function 𝐺(𝑥 − 𝑤, 𝑡), we can solve the partial 

differential equation for a given boundary function 𝜑(𝑥, 0) = ℎ(𝑥). 

           𝜑(𝑥, 𝑡) = ∫ ℎ(𝑤)𝐺(𝑥 − 𝑤, 𝑡)𝑑𝑤
∞

−∞
 

           𝜑(𝑥, 𝑡) =
1

2√𝜋𝑡
∫ ℎ(𝑤)𝑒−

(𝑥−𝑤)2

4𝑡 𝑑𝑤
∞

−∞
.      

  

                                     

 


