Fourier Transforms

The Fourier transform of a real valued function f (x) is another function called

F (k) (where k is a real variable) given by:
0 _ (*® —ikx
Flk) = J__ f(x)e™™*dx
The inverse Fourier transform of a function F'(k) is given by:

fG) = [ F(k)ek*dk

It turns out that at points where f (x) is continuous the above equation holds
(i.e. the inverse Fourier transform of the Fourier transform of f(x) equals f (x)).

At points where f () is discontinuous, say X, we have:
lim > (f (xo + €) + [ (x0 — €)) = 5- [, F(k)e**odk.
E—

That is, the RHS converges to the average of the limit of f (x) from the right and
from the left. We will assume that f(x) has at most a finite number of

discontinuities, lir_ll_l f(x) =0and f_oooo |f (x)|dx, fjooo|f(x)|2dx exist.
x—+o0

The Fourier transform (on a finite interval) at integer values of X shows up as
the coefficients of a function’s Fourier series. That is, if you have a function f(x)

defined on (—L, L), we can extend it as a periodic function of period 2L and the
Fourier series (which we will not be studying here) of that function is:

nmnxi
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f(x) = X1=2, F(n)e

where F(n) = ﬁf_LLf(x)e_(T)dx :
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2 and show that

Ex. Compute the Fourier transform, F (k), of f(x) = o

fO0) == % F(k)e*dk where F(k) = [ ——e~**dx.

—00 x2+4

First let’s calculate F (k) = foo e~ X dx. We will do this through

—00 x24+4
contour integration when k # 0, however, we will need to consider separately
the cases where k < 0and k > 0.

Case 1: k < 0. Then —k > 0. This determines which semicircular region we
integrate around (upper half plane or lower half plane). In this case we use the
semicircular region in the upper half plane .
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lim e *?dz = lim [f e~ *2dz +j e~ Hxdx].
R-w . 72 4+ 4 Roow ). z2 + 4 _prX?+4
R

: 1
l%lm fCR Z21a e *2dz =0 by Jordan’s lemma (this is why we chose the upper
—00

half plane), since is a rational function where the degree of the denominator

z2+4
is larger than the degree of the numerator, it goes to 0 uniformly as R goes to
infinity.



So now we have:
R 1 o 1

lim § —e *2dz = lim [ ——e tkXdx = —— e kX dy.
R—o00 ¢C z2+4 R—o00 f_R x2+4 f—oo x2+4

We can evaluate the integral on the LHS by Cauchy’s residue theorem.

lim

] ) e~ *2dz = 2mi(sum of residues of poles inside C)
—00 c

1 : o
=12 ® tkZ has poles at z = +2i, but only z = 2i is inside C.

. ~ikz —ik(2D) 2k
Res (%e‘”‘z; Zi) = lim (z — 2i) ( : ) c ==
z“+4

7521 Z—20G+20) — @ir20) 4
So
B | . 1 . e?k g
e *kXdx = lim —— e H2dy = 2i(—) = —e2k
j_oox2+4 R J, 2% + 4 z=2mi(50) =5

Thus F(k) = %eZR, if k < 0.

Case 2: If k > 0, then —k < 0, so we need to use the semicircular region in the
lower half plane in order to use Jordan’s lemma.
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R—o0

e *2dz = lim [/

7244 R—ooo Y CR z2+4

i _R 1 s
e lkZdZ+fR me lkde].

Now by Jordan’s lemma (as used in the first part)

1 ,
lim j e kzdy =0

R Jo 7% + 4
1 . foe) 1 .
and lim gﬁ e *2d7 = lim f — e thxgy = — o kX gy
R—ooo +4- R— o x2+4 —00 x244

_ 1
lim

] T 4e'”‘zdz = 2mi(sum of residues of poles inside C).
—o J-

1

me_ikz has poles at z = +2i, butonly Z = —2i is inside C.

Res( ~ikz, 21) = lim (z + 21)( e~ tkz )  emik(-2) -2k

244 Z——2i (z=20)(z+2i))  (-2i-2i)  —4i

So we have:

j°° = e *¥dx = —lim L e R2dz = —Zm'(e_Zk) = Lok
_o X%+ 4 R- J. z2 +4 —4i

Thus  F(k) = %e‘z", ifk > 0.

Putting this together with the result F(k) = 262", if k <0, we get:

F(k) ==e 2kl fork # 0.



Ifk =0, f dx can be computed directly by:

[ dx =
— 0 x4+4 a——00 b—oo
1 0 x
= Z[al_l) Oofa - dx + llrn f dx] now letu = -
1 . 0 1(m T T
p— 2 —_— | — _— —_— -
z[agmmf; 1+(u d“ﬂ‘l&f 1+ ()Zd ul 2(2+2) 2
so F(k)==e72kl, keR.
, 1 . © g T _
Now let’s show: —— = f F(k)e**dk = —f o e (e 2k dk.
1 (® . & 1 (° & 1 (® .. =
T ikxr_ ,—2|k| - ikxr_ 2k T ikxr_ -2k
o _ooe (Ze )dk o _Ooe (Ze )dk+27r,[0 e (Ze )dk

— %U‘_OOO e(2+ix)kdk + fooo e(—2+ix)kdk]

1 _e(@+ix)k k=0 e (—2+ix)k k=00

4t 2+ix | —2+ix |p_g

1 1 1
=21(==-0)+(0- =)

4 24+1x —2+ix
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Ex. Find the Fourier transform, F(k),of: f(x) =1 0<x<1
=0 x<0orx>1

And then find the inverse Fourier transform of F'(k)

R 0 . 1 e
Fk) = f f(x)e *xdx = j e Xy = —

N
Fk) =+ (e7™ —1).
Now let’s evaluate the inverse Fourier transform of F (k).

1 (© . 1 (@i .
— L ikx — _ (o~ tk _ ikx
900 =5 J_ ooF(k)e dk = j_ ook(e Deikxdk

i oo 1 . _ .
:E —ooE(el(x 1)k_elkx)dk_

Let’s break this up into 2 integrals.

o ei(x—l)k

i
Let's evaluate — f —— dk first.
2T k

— 00

Casel: x — 1> 0. Theintegrand hasa poleat k = 0, so let’s use a contour

integral with 2 semicircles:

| f'-—\\T C=Cgr+[-R —€]+Cc+[eR]
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i(x—-1)z
lim ° 7
R—00,6-0 ¢C z
i(x-1)z e elx—1k pi(x—1)z R oiCr-Dk
= i e, dzt ekt f ——dz+ o —dk

L(x 1)z

lim gﬁ

R—coo
rational functlon whose denominator has a higher degree than its numerator so it

1
dz = 0 by Jordan’s lemma because x — 1 > 0, and - isa

converges uniformly to 0 as R goes to infinity.

i(x—1)z

To evaluate llmf —dZ;
-0 z

letz = ce'®, dz = ice'®d@

eilx—1)z 0 ei(x—l)eeie

lim f ——dz =lim [

T
lim lim — 10 icet”do

=11mlf eil=Dee'’ gg — lf limei(x—Dee’ gp

e—0 T -0

if; 1d6 = —mi

. . _ ie
Note: we can pass the lim through the integral sign because e!(*~1)€€

e—0

converges to 1 uniformly as € goes to 0.

So we have:
el(x—1)z o elx—1k
lim ¢ “——dz=—ni+ [ ~——dk.
R—0,e—0 k



el(x—1)z

lim gﬁc dz = 2mi(sum of residues of poles inside C)

R—o00,e-0 Z

But there are no poles inside C so

l pi(x—1)z 0
1m Z=0U.
R—00,e-0 Sﬁc
) o pllx-1k
Thus: 0 = —mi +f e—dk and

2 V=™ k

. i(x—-1)k 1 i 1
L (L)mz—z forx —1>0 orx>1.

21

Case2: Ifx —1<0; i.e. x <1, averysimilar argument using the analogous
contour but in the lower half plane we get:

i o ei(x—l)k

— —dk=% for x <1.

2 Y= k

i o eikx
Now let’s evaluate the second integral: —
2w - k

dk.

Again we need to consider 2 cases: when x > 0 and when x < 0.

Case 1: x > 0; we use the contour with 2 semicircles in the upper half plane.




Once again we have:

lim ¢ -

R—o00,e-0

= lim [fc

R—00,6-0

dk+f —d +f —dk].

R

1, )
2 is a rational

lim [. = cr

R—o00 VA
function whose denominator has a higher degree than its numerator so it

converges uniformly to 0 as R goes to infinity.

le

To evaluate llmf dZ;

-0

let z = 66‘9 dz = iee?do

eeie 3
llmf —iee'?do
€—0 €—0 eel
io
= hmlf eixee' gg = Lf lime™€¢™ do
e—0 T -0
. (0
=i 1d6 = —mi
T
So we have:
elxz o elxk
lim dz = —mi + dk.
R—o00,e-0 §C Z f
e'x? : : .
R_)lc}ong_)o gﬁc - dz = 2mi(sum of residues of poles inside C).



But there are no poles inside C so

] elxz
lim ¢
R—00,e-0 C VA

dz = 0.

] o elxk
Thus: 0= —mi + [ dk and
; ixk ; i 1
- ooe—dk=(L)T[l=—— for x > 0.
2T Y —0 k 2T 2

Case 2: If x < 0, we use the contour with two semicircles, but in the lower half
plane (to make Jordan’s lemma work).

A very similar argument to the one just made gives us

Thus we have:

co 1

g(x) = Lf L (eix=Dk _ gikcy g,

2w k

7 i(x—l)k 1
L[ e dk = —= ifx>1
2rJ/—©0 g 2
1
= - ifx<1
2
ixk 1
(P gk =—= it x>0
2V =0 k 2
1
= = if x <O.
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So gx)=1 if 0<x<1

=0 ifx<0 or x>1.

But what are g(0) and g(1)?

C o p—ik_
9(0) =5 [7, = dk.

If we use a contour with 2 semicircles in the lower half plane get

\\\ /,
CR ; \ '
e~iZ_q

lim dz

R—00,e-0 ﬁc VA
e"iZ—1 €e 21 e"iZ—1 —Re iz—1
= lim dz + dk + dz + dk
R—>00,e—>0[fCR z fR z fCE f—e z ]

The LHS is 0 because there are no poles inside of C.

lim [ Sdz=lim [f, S—dz— [, 1dz]

R—00,e—0 zZ R—00,e—0 R ZzZ Crz



e—lZ

lim [ ~dz=

R—00,6—-0

So 0=—7‘L’i-|—0+fo;00

thus g(0) = [,

R—00,6-0

e—ik_

lim fzn !

lim
R—00,e—-0

— i fo_”

—ik_
e 1 dk
k

1

T Rei@

dz = 0 by Jordan’s lemma.

(iRe?®)d6 = [°"id6 = mi

i [ (e — 1)d6

lim (e~ —1)da

R—00,e-0

0 e7tk_q .
or f_oo . dk = —mi.

)(—ni) =21
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o 1—elk

dk; we use the contour with 2 semicircles in the

Forg(1) = —f
upper half plane.

1 1
A very similar argument to the one used to get g(O) =3 give us g(l) =3

So we have the following description of g(x);
glx)=1 if0<x<1
=0 if x <0 or x>1

g(0) =5 =3 (lim f(x) + lim f(x)

x-07t

g =5 =5 imf@) + lim ().

x—-1t

So g(x), which is what we get when we take the inverse Fourier transform of the
the Fourier transform of f (), is equal to f (x) whereever f (x) is continuous,

and equal to the average or the limit from the right and left of f(x) at points of
discontinuity.



