Evaluating Certain Definite Integrals

In some cases Cauchy’s residue theorem can be used to evaluate definite
integrals of the form:

[Z flx)dx

where f(x) is a real valued function. This approach can sometimes allow us to
evaluate integrals that are not possible to evaluate using techniques learned in
first year Calculus.

One “trick” is to consider the contour integral:

$. f(2)dz = f_RRf(z)dz + fCRf(Z)dZ

where the contour C includes the line segment along the x-axis from
—R to R plus a curve in the upper or lower half plane. Notice that in this case:

5 f@dz = [F, f)dx.
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If we can show that I%I_I)lgo fCR f(z)dz = 0 then we have:

2mi(sum of residues) = }%im fc f(2)dz

= lim [% f@)dx + lim [ f(2)dz

= [~ f(x)dx.

This approach will work if f(x) is a rational function (a ratio of polynomials);
N

flx) = %; where D(x) # O forall x € R, and the degree of D (x) is at
least two higher than the degree of N (x) (this will guarantee that
lim fcR f(2)dz = 0).

R—oo

N
Theorem: Let f(z) = % be a rational function such that the degree of D(2)

exceeds the degree of N(2) by at least two. Then

lim fCRf(z)dz =0

R—o0

where Cp is a semicircle of radius R in the upper or lower half plane centered at

(0,0).
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The proof of the theorem is a little "messy", but follows the idea in the following
example.

Ex. Show that llmf

Zdz = 0, where Cp is a semicircle of radius R in
R—o0

Cr 22

the upper half plane centered at (0,0).

let z = Re't, dz = iRe'tdLt.

= [ R)dt =%

thus since I%im % = 0 we have by the squeeze theorem:
—00

OSIfRZZdz|_

lim .

R— o0

—dZ = 0.

lim
Cr z2

R—o00

|, Zdzl=0 =

oo
Ex. Evaluate f_oo o

We start with the contour C made from a line segment along the x-axis from — R
to R plus a semicircle in the upper half plane of radius R centered at (0,0).

§. f()dz = [* f@)dx + [ f(2)dz

R 1 1 / .
_ \
SﬁC z4+1 dz = f—R x*+1 dx + fCR z4+1 dz. /
|' N
Now let’s show that lim f —dz = 0. —R 7
R—oo CR z%+1




Since is a rational function such that the degree of the denominator (4) is at

z4+1
least 2 higher than the degree of the numerator (0), by our previous theorem we

; 1
have: lim dz = 0.
R—>oo ¢CR z¥+1

This means that:

1 R 1 1
lim dz = lim dx + lim dz
R-> o0 éc z44+1 R->o0 f_R x*+1 R—> o0 fCR z44+1
00 1
oo xt41

We can evaluate lim 456 dZ by using Cauchy’s Residue theorem.

R—o0 z4+1

Now let’s find the residue of all the poles inside of C (when R is large).

= has poles when z*+1=0o0rz*=—-1.
z*+1

—1 = e(m’+2n7ti),

We write —1 in polar form as : ; Where 1 is an integer.

42 . (mi+2nmi) i, Tin
z¥ = —1 =e@+2nn) o =" 2 =gz 2z,
Forn =0,1,2,3 weget: i N.C
T 3mi 57l 7Tl 3k
. — — — i 1 i \
Z=e4, €4, €4, € 4. f pasr Y
_ _ ” w
mi 3mi /
Onlyz = e+, e 4 areinside of C. | 4
| \
| \
LY @ 7mi
5mi “ 7z =el4
Z=e4 1




Since these are simple poles we can use:

N
Iff(z) = % ; and z; is a simple pole, then

Res(f(2); zo) =~

D'(zo)
f(2) = Z4l+1; N(z)=1; D(z) =z*+1; D'(2) = 423
mi mi 1 1 3™
Atz = e+ Res(f(z);e4)= — =-¢ 4
4(e4)3
3mi 3mi 1 1 ™
Atz = e 4 Res(f(z);ezr):T:Ze 4
4(e 4 )3

So by Cauchy’s Residue theorem:

Lz =2miGe™s +ie ) =T(eTh +eh)
= 7T?i(cos (— %n) + isin (—%) + cos (—%) + isin (—g))
o 7z
i (iyZ) =2

So we finally have:

V2 1 S |
”—=j£ dz=f dx.
C —_

2 z4+ 1 x4+ 1

¢C z4+1

If we had used a semicircle in the lower half plane enclosing the other 2 poles, we
would have gotten the same answer.
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Ex. Evaluate fo D) dx.

C .rz \\\I\
ZZ R xZ ZZ R/ ,
(z2+1)? dz = f—R (x%+1)? dx + fCR (z2+1)? dz; / . h

where Cp is a semicircle of radius R in the

upper half plane centered at (0,0).

72

(z2+1)2

is a rational function where the

degree of the denominator (4) is at least two large than the degree of the
numerator (2). Thus by our previous theorem:

2
lim [. ——dz=0.
A S (22+1)°

2 2
t @212 dz we need to find the residue at any poles of (zZZ+1)2
ZZ
(z2+1)2
poles), but only Z = i lies inside of C (since Z = —I lies in the lower half plane).

To calculate

that lie inside of C. The poles of occur at Z = =+1i (both are double

72

ZZ
f(z) = (z2+41)2  (z+0)2(z—0)2

To calculate the residue of a multiple pole we use the formula:

d(::j) ((z = z0)™f(2)) atz =z,

dz

Res(f(2);20) = —,



. . d N2 72 .
Atzo=i,m =2, Res(f(z);i)= = [((z—1) (m)] atz =i.

i( z2 )_ (z+1)?(22)—z2%(2)(z+1)
dz \(z+1)2) (z+i)%
_ (z+D)(22)-227
- (z+i)3
_20(D-20) _ i
@23 4

atZz =1

atZz = 1

2 s

dz = 2mi (—i) = -,

2

VA
>0 95(: (22+1)2

Thus we have:

T ZZ R x2 (e's) X2
— = ——dz = 1li ——dx = ——dx.
2 i @2+ Rhe) 212 Lmu2+nzx

(e¢] xz 2

(0 0]
By symmetry [ dx =2 ~__dx, so

© (x2+1)2 0 (x241)2 "’

f°° x? p om
o (202 Ty



Integrals of the form:

1. ffooo f(x) cos(kx) dx
2. f_oooof(x)sin (kx)dx
3. [0 f(x)er**dx, k>0

where f(x) = NG, is a rational function where the degree of the

D(x)

denominator, D (x), exceeds the degree of the numerator, N(x), and
D(x) # Oforallx € R.

Lemma (Jordan): Suppose on the semi-circular arc Cr in the upper half plane
we have |f(2)| < Ky, where K depends juston R, not 8 = Arg(z), and
lim K = 0 (this means that f(z) — 0 uniformly as R = o) then

R—oo

lim f f(z)e”‘zdz =0, k>0.

R—oo CR

Proof:

|fCRf(Z)eikZdZ| < fCle(Z)||eikZ||dz| R

let z=Re'; dz=1iRedo
_ foﬂlf(Reie)l|eik(x+iy)||l-Rei9|d9
< [ Kgle™*|le™®|Rd®; (y = Rsind)
= [, Kge *Rsm9Rdg

T
=2 foE Kre *BSMORAQ;  since sin(m — 6) = sind



. 20
Claim: For 0 <0 <—=; sinf 2?.

SEE

. 260
Notice if g(0) = sinf — — g0)=0, g (g) =0, g G) > 0.
Forg(f) =0for0 <0 < % we need 2 pts where g’ (8) = 0.

But that can’t happen since g’'(8) = cosf — % is decreasingon 0 < 0 < g :

IfCRf(z)eikZdz| < 2KgxR fOEe_TdQ =R (1 - L

as R — oo because Kp = 0as R — oo,

N
Notice that any rational function f(z) = % where D (z) is higher degree

than N (z) (it doesn’t need to be at least two degrees higher) satisfies the
conditions of this lemma.

Jordan’s lemma also holds for

lim (2)e *?dz =0, k>0
Cr

R—o0

If Cg is the semicircle in the lower half plane.

In cases where we want to evaluate

fjooof(x) cos(kx) dx or ffooof(x) sin(kx) dx

We will evaluate the contour integral fﬁc f(2)e™? and break it up into its real

and imaginary parts at the end:

IZ foe®*dx = [ f(x) cos(kx) dx +i [, f(x)sin(kx) dx.



10

x3sinx

0 (x2+1)(x2+4)

Ex. Evaluate

We start with:

L DA T i@ T T i@y n Y

Where Cp, is a semicircle of radius R in the upper half plane centered at (0,0).

x’fﬂ.x %HH\
C;y* N
|'.III.lIIIIr ..-"I"'u
III II|
| N |
—R 7 R
23
Notice that f(Z) = 210221 4) is a rational function where the degree of the

denominator (4) is higher than the degree of the numerator (3). Thus it satisfies
Jordan’s lemma and we can conclude that:

Z3elz

lim [

R—oo “CR (2%2+41)(z%+4)
Thus we know:

3,iz 3,ix 3,ix
zCe . R xe o x°e
dz = lim [ dx =

R—o0 VC (z2+41)(z%+4) R—oo VR (x%2+1)(x2+4) f—oo (x%2+1)(x2+4)
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Z3elz

To calculate lim ¢ dz we need to find the residues at the poles

R—o0 'C (z2+1)(z%2+4)
3,iz

of f(z) = z°

(z2+1)(z2+4) - (z+i)(z—i)(z+20)(z—20)

ZSelZ

which lie inside of C.

Those poles are z = i, 2i (since —i and —2i lie in the lower half plane).

| | . ZSeiz
Res(f(2); 1) = lim(z — i)( (z + ) (z —i)(z + 20)(z — 20) )
_ i3e®? _—ie7t  e?
T @OGHCH | 6 6
ZSeiz

Res(f (2); 21) = lim (z — 20)( )

(z+D)(z—-1)(z+20)(z—2iQ)

_ (21')3e2i2 __ —8ie™? _2e7%
T @BDO)@)  -12i 3
. z3el? . e”l  2e72 i
>0 1%1_{?0 956 (22+1)(22+4) dz = 27 (_ s T 3 ) " 3e2 (4—e).
Thus 2 (4—€) = lim §. —2oe —dz = [© — 2
U 3e2 T RowC (Z22+1)(22+4) ©  J-o0 (x2+1)(x2+4)
o0 x3cosx . [ x3sinx
+ f—oo (x2+1)(x2%+4) X

—0 (x24+1)(x2%+4)

So by equating the real and imaginary parts of the 2 sides we get:

f_oo x3cosx dx = 0 f_oo x3sinx do = T (4 _ e).

0 (x2+41)(x2+4) 0 (x2+41)(x2+4) 3e2




3

Since (xziljézzwl) is an even function (i.e. f(—x) = f(x))
o x3sinx x3sinx T
Js (x2+1)(x2+4) _f 00 (x2+1)(x2+4) dx =z (4 —e).

Integrals of the form:

foznf(sine, cos8)do

where f(x,y) is a rational function of x, y.

For these integrals we make the substitution:

] . g dz
z =el? dz = ie'?do or — = do.

016 4 06 Z+§
Then: cosO = » = -

. , 1
0 —-i0 —=
) el —¢ z
sinf = : = —=

21 21

Thus we have:

[ f(sing 0)do = ¢ f(z—_§ Z%)id' Cislz| =1
0fsm,cos = 9. 2i’2izZ’ is |z] = 1.

12



do
2+sinf@

2T
Ex. Evaluate fO

i0

13

i . g dz . e
Welet z=e, dz=1ie?df or —= dl, sinf = >

2 df 1 1
fO 2+sinf ¢C (2+(z—%))EdZ;

2i
where C is the unit circle, |z| = 1.

Now let’s simplify the messy fraction in the integrand:

1

Sﬁc (—)édz = Sﬁc (z—i).idz = ﬁc (m)dz

(z-2)
21

] 1
41+(z—) 1Z
2+ ( Z)

By Cauchy’s residue theorem:

9SC (m)dz = 2mi(sum of residues inside C).

The poles of the integrand occur when 72 +4iz—1=0. Using the quadratic

formulawitha = 1,b = 4i,c = —1:

—4i+./(40)2-4(1)(-1) _ -4itV/—16+4
2(1) - 2

i
:%‘El = —2i +V3i (-2 £ V3)i.
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Only one of the 2 roots is inside |z]| = 1.
(-2 =V3)i| =2++V3> 1,
(-2 +V3)i|=|-2+V3|=2-V3< 1.

So now we have to find the residue at z = (—2 + \/§)l
If we know the 2 roots of a quadratic equation then we can factor:

az’+bz+c=a(z—1)(z—1)
Sowe have: z?+4iz—1= [Z— (—2 + \/g)l] [z— (—2 — \/g)l]

Atz = (=2 ++/3)i;
Res(f(z);(—Z +\/§)i)
= lim (z—( 2+\/—)1)(

2
() (273

z-(-2++/3)i
= lim 2
z-(- 2+\/_)l(z_( 2—V/3)i)
_ 2
— ((-2+V3)i—(-2—-V3)i)
2 1
T 2V3i O VBiC

N((-2+V3)i)
D'((-2+v3)i)

Note: Res(f(z); (—2 + \/§)l) can also be calculated using

2t do
fO 2+4sinf SﬁC (4LZ+(ZZ 1))dZ an(

>0 \/_l) ZTZ



T sin20
Ex. Evaluate S EE—
0 5+4cos6
st notice that [ sin?6 f27r sin?
irst notice tha —_— = -
0 5+4cost9 5+4cos6
because cos(2m — 6) = cos6.
i . dz
We now let z=¢e9 dz=1ie%df or —= deé.
) . 1 . . 1
elfye=t0  z+- , el _e-0  z—
cosf = = —£ . sinf = — = —%
2 2 21 21
2 inze z—3 1
T Sin -
—dfe = z)2 dZ
fO 5+4cosf 95(3 (Zi) ( )
5+4( )
z“-1 1 1
= § sz
2iz Z(Z +1) iz
Z
1 (z2—1)2 1 1
=-29 ( )-dz
47C 72 5z+2(z2+1)7 i

i

(z2-1)’

- Z§C z2(22z%2+5z+2)

4

_ ifﬁc (z2-1)

z2(2z+1)(z+2)

15

So



2
(Z221) | 2 a double pole at z = 0 and simple poles at L 9
Z = zZ=—=,=2:
22D (2+2) as a double pole a and simple poles a >0 2
1
however, onlyz = 0 and z = — > areinside C: |z| = 1.
So we must find the residuesatz = 0O and z = —%.

2
Atz = 0; Res(f(2);0) = (( 2) <22(22+_1;()z+2)>>. atz =10

i( (z2-1)° ) _ (2%-1)(4z3+152%+122+5)

(2z%2+5z+2) (2z%2+5z+2)2

Atz =10 weget Res(f(2);0) = —~.

_ 1 A T 1 (z-1)°
Atz =—— Res (f(Z)» 2) = hrfll((z + 2) <22(22+1)(Z+2)))
2

VA

= lim (-1

1 2z2(z+2) 4"
2

Z—>—

2
i (z2-1) i ] 5 3 T
- dz=—27u(—— —)=—.
47C z2(2z+1)(z+2) 4 ( ) 4 t 4 4
2T sin?6 T T sin%0 T
S —_— = - d - = —.
° fO 5+4cos0 4 an fO 5+4cos6 8

16
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Indented Contours

So far we have seen how to calculate certain integrals of the form

foo f(x)dx ffooof(x) cos(kx) dx, and ffooof(x) sin(kx) dx , where

fx) = m is a rational function, but D(x) # 0 for x € R. However, what

do we do if f (x) has a singularity for x € R? Sometimes these integrals can still
be calculated by making a small semicircular indentation in the contour around
the singularity on the real axis and then letting the radius of that indentation go

to 0. .
N d
—T~C-
| \ |7 \ \\ 1
—R 7 —€ € // R
co sin(3x
Ex. Evaluate f ( )d

C= lim {Cp+[-R,—€]+C.+[eR]}.

R—00,e-0

As we did before, we replace sin(kx) with e"**, and x with z in the integral.
¢ e3iz
C
: R e3‘x
~ i [J, ° ]
R—00,e—0 “CR z

The LHS we calculate by using residues. On the RHS, integrals number 2 and
31.x
4 will add up to f —— dx, which is what we are trying to evaluate. That leaves

integrals number 1 and 3 that we have to evaluate.



3iz 3iz
Notice that has no poles inside of C so 956 2 dz = 0.
3iz
For I%lm f dz, notice that we can apply Jordan’s lemma because in this
— 00
case f(z) = |s a rational function where the denominator has a degree (1)

bigger that the numerator (0). Thus we know:

lim [ = = 0.

R—oo Cr z

Now we have to evaluate: llr% f
E—

letz = ee'?, and dz = ieewdH

e3LZ 0 ,3iee 0
lim | ——dz=1lim | ———ice®do =1limi | e3€“dg
€-0 J - Z €-0 J eel €—0

€

=if Ll_rgem'eewde = if;ld@ = —

: ;10
Note: We can pass the llng through the integral sign because eltee converges
E—

uniformly to 1 as € goes to 0.

Putting everything together now we get:

0=4¢.

= lim [fc

R—00,e-0 R Z

R eSlx

oo eSix

=0+ [

dx —1mi or

3ix

[ ex dx = mi .

18



Thus we have:

foo cos)(CBx) dx + l.f_oooo sin)(CBx) dx =

— 00

Equating the real and imaginary parts of both sides we get:

foo cos}(CSx)d —0 and foo sm(3x)d -

— 0

51n(3x)

Since f(x) =
foo sin (3x) dx = lfoo sin (3x) dx ==

0 X 2Y—00 X

is an even function (f (—x) = f(x))

19



