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                                      The Cauchy Residue Theorem 

 

     Let 𝑓(𝑧) be analytic in a region 𝐷 defined by 0 < |𝑧 − 𝑧0| < 𝑅 and 𝑧 = 𝑧0 

is an isolated singularity of 𝑓(𝑧).  We know that 𝑓(𝑧) has a Laurent series given 

by: 

           𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛𝑛=∞
𝑛=−∞ ;          with   𝑎𝑛 =

1

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧−𝑧0)𝑛 𝑑𝑧
𝐶

 

where 𝐶 is a simple closed contour lying in 𝐷 and enclosing 𝑧0. 

∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛𝑛=−1
𝑛=−∞  is called the principal part of the series and 𝑎−1, the 

coefficient of the 
1

𝑧−𝑧0
 term is called the residue of 𝑓(𝑧) at 𝑧 = 𝑧0. 

We will denote the residue of 𝑓(𝑧) at 𝑧 = 𝑧0 by 𝑅𝑒𝑠(𝑓(𝑧); 𝑧0). 

We also know that for a simple closed curve 𝐶 where 𝑧0 is inside of 𝐶: 

                               ∮
1

(𝑧−𝑧0)𝑛 𝑑𝑧 = 0          𝑖𝑓 𝑛 ≠ 1
𝐶

 

                                                    = 2𝜋𝑖      𝑖𝑓 𝑛 = 1 .    

Thus we saw that:    ∮ 𝑓(𝑧)𝑑𝑧 = ∮ ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛𝑛=∞
𝑛=−∞ 𝑑𝑧 = 2𝜋𝑖(

𝐶𝐶
𝑎−1). 

If there are multiple singularities in 𝐷, 𝑧1, 𝑧2, … , 𝑧𝑛, inside of 𝐶 we can extend 

this result as follows: 

Theorem (Cauchy Residue Theorem); Let 𝑓(𝑧) be analytic inside a simple closed 

contour 𝐶, except for a finite number of isolated singularities 𝑧1, 𝑧2, … , 𝑧𝑛 

located inside 𝐶.  Then 

                               ∮ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 ∑ 𝑐𝑗
𝑛
𝑗=1𝐶

 

where 𝑐𝑗  is the residue of 𝑓(𝑧) at 𝑧 = 𝑧𝑗 . 
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Proof:  Let 𝐶1, 𝐶2, … , 𝐶𝑛 be small nonintersecting circles centered at 

𝑧1, 𝑧2, … , 𝑧𝑛.  Create crosscuts from 𝐶 to 𝐶1, 𝐶2, … , 𝐶𝑛 (see diagram below). 

 

 

Since ∫ 𝑓(𝑧)𝑑𝑧 + ∫ 𝑓(𝑧)𝑑𝑧 = 0
𝑝𝑗

𝑞𝑗

𝑞𝑗

𝑝𝑗
, for each 𝑗 we have: 

                  ∮ 𝑓(𝑧)𝑑𝑧 = 0;
Γ

    where Γ = 𝐶 − 𝐶1 − 𝐶2 … − 𝐶𝑛; 

by Cauchy's  theorem. 

 

Thus    ∫ 𝑓(𝑧)𝑑𝑧 = ∑ ∫ 𝑓(𝑧)𝑑𝑧
𝐶𝑗

𝑛
𝑗=1𝐶

. 

 

𝐶 

𝑝1 

𝑞1 
𝑧1 

𝐶1 

𝑝2 

𝑞2 

𝑧2 𝐶2 

𝑝3 

𝑞3 𝑧3 
𝐶3 
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Using the Laurent expansion for 𝑓(𝑧) around each singularity we get: 

                                     ∮ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 ∑ 𝑐𝑗
𝑛
𝑗=1𝐶

 

where 𝑐𝑗  is the residue of 𝑓(𝑧) at 𝑧 = 𝑧𝑗 . 

 

 

Ex.  Evaluate 
1

2𝜋𝑖
∮ 𝑧2𝑒

1

𝑧𝑑𝑧
𝐶

;   where 𝐶 is the unit circle |𝑧| = 1. 

  

The only singularity inside of 𝐶 is the point 𝑧 = 0. So we need the Laurent series 

around the point 𝑧 = 0. 

         𝑧2𝑒
1

𝑧 = 𝑧2(1 + 
1

𝑧
+

1

(2!)(𝑧2)
+

1

(3!)(𝑧3)
+ ⋯ +

1

(𝑛!)(𝑧𝑛)
+ ⋯ ) 

                   = 𝑧2 + 𝑧 + 
1

2
+

1

6𝑧
+ ⋯ +

1

(𝑛!)(𝑧𝑛−2)
+ ⋯ 

 

Hence the 𝑅𝑒𝑠(𝑓(𝑧); 0) =
1

6
. 

 

Thus    
1

2𝜋𝑖
∮ 𝑧2𝑒

1

𝑧𝑑𝑧
𝐶

=
1

6
 . 
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Ex.  Evaluate ∮
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
  where 𝐶 is the circle 

a. |𝑧| = 1 

b. |𝑧 + 2| = 1 

c. |𝑧| = 3. 

First use partial fractions to get the Laurent series for 
2𝑧+6

𝑧2+2𝑧
. 

2𝑧+6

𝑧2+2𝑧
=

2𝑧+6

𝑧(𝑧+2)
=

𝐴

𝑧
+

𝐵

𝑧+2
=

𝐴(𝑧+2)+𝐵𝑧

𝑧(𝑧+2)
  

2𝑧 + 6 = 𝐴(𝑧 + 2) + 𝐵𝑧  

At 𝑧 = 0;          6 = 2𝐴;      so 𝐴 = 3. 

At 𝑧 = −2;       2(−2) + 6 = −2𝐵;     so 𝐵 = −1. 

               
2𝑧+6

𝑧2+2𝑧
=

3

𝑧
−

1

𝑧+2
 ;   has singularities at 𝑧 = 0, −2. 

 

 

 

 

 

 

 

 

 

 

|𝑧| = 1 |𝑧 + 2| = 1 

|𝑧| = 3 

0 −2 
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a. The circle |𝑧| = 1 encloses only the singularity at 𝑧 = 0, thus 

               ∮
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
= (2𝜋𝑖)𝑅𝑒𝑠(𝑓(𝑧); 0).  

           
2𝑧+6

𝑧2+2𝑧
=

3

𝑧
−

1

𝑧+2
 , around 𝑧 = 0.  

          −
1

𝑧+2
  is analytic so won’t contribute anything to the residue of 

2𝑧+6

𝑧2+2𝑧
 at 

              𝑧 = 0. 

           𝑎−1 for the Laurent series of 
3

𝑧
 around  𝑧 = 0 is 3.  

          Thus 𝑅𝑒𝑠(𝑓(𝑧); 0) = 3.  So ∮
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
 = 2𝜋𝑖(3) = 6𝜋𝑖.  

 

 

b. The circle |𝑧 + 2| = 1 encloses only the singularity at 𝑧 = −2, thus 

     ∮
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
= (2𝜋𝑖)𝑅𝑒𝑠(𝑓(𝑧); −2).   

     So we want the Laurent series for 𝑓(𝑧) =
2𝑧+6

𝑧2+2𝑧
=

3

𝑧
−

1

𝑧+2
 around 

       𝑧 = −2.  

       
3

𝑧
  is analytic around 𝑧 = −2 so won’t contribute anything to the residue 

       of 𝑓(𝑧) at 𝑧 = −2.  

      𝑎−1 for the  Laurent series around 𝑧 = −2, is −1 (the coefficient of the 

       
1

𝑧+2
 term). Thus 

                   𝑅𝑒𝑠(𝑓(𝑧); −2) = −1  and  ∮
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
 = 2𝜋𝑖(−1) = −2𝜋𝑖. 
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c. The circle |𝑧| = 3 encloses both singularities, thus 

∮
2𝑧 + 6

𝑧2 + 2𝑧
𝑑𝑧

𝐶

= 2𝜋𝑖[𝑅𝑒𝑠(𝑓(𝑧); 0) + 𝑅𝑒𝑠(𝑓(𝑧); −2)] 

                                                            = 2𝜋𝑖(3 − 1) = 4𝜋𝑖. 

Def.  Let  𝑓(𝑧) =
ℎ(𝑧)

(𝑧−𝑧0)
𝑚 ,  where ℎ(𝑧) is analytic in a neighborhood of 𝑧 = 𝑧0, 

𝑚 a positive integer, and ℎ(𝑧0) ≠ 0.  We then say 𝑓(𝑧) has a pole of order 𝑚.  

 

     If 𝑓(𝑧) has a pole of order 𝑚 then  ℎ(𝑧) is analytic near 𝑧 = 𝑧0 and we can 

write down its Taylor series: 

ℎ(𝑧) = ℎ(𝑧0) + ℎ′(𝑧0)(𝑧 − 𝑧0) + ⋯ +
ℎ

(𝑚−1)
(𝑧0)

(𝑚−1)!
(𝑧 − 𝑧0)𝑚−1 + ⋯ .   

Now let’s divide by (𝑧 − 𝑧0)𝑚 to get an expression for 𝑓(𝑧). 

𝑓(𝑧) =
ℎ(𝑧)

(𝑧−𝑧0)𝑚 =
ℎ(𝑧0)

(𝑧−𝑧0)𝑚 +
ℎ′(𝑧0)

(𝑧−𝑧0)𝑚−1 + ⋯
ℎ(𝑚−1)(𝑧0)

(𝑚−1)!(𝑧−𝑧0)
+ ⋯  

So 𝑎−1 for 𝑓(𝑧) is 
ℎ(𝑚−1)(𝑧0)

(𝑚−1)!
,   or (for a pole of order m): 

                         𝒂−𝟏 =
𝟏

(𝒎−𝟏)!

𝒅
(𝒎−𝟏)

𝒅𝒛
(𝒎−𝟏) ((𝒛 − 𝒛𝟎)𝒎𝒇(𝒛))   𝒂𝒕 𝒛 = 𝒛𝟎.     

 

For a simple pole, i.e. 𝑚 = 1, this formula becomes: 

                        𝒂−𝟏 = 𝐥𝐢𝐦
𝒛→𝒛𝟎

((𝒛 − 𝒛𝟎)𝒇(𝒛)). 
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If 𝑓(𝑧) has an essential singularity, i.e an isolated singularity that is not a pole of 

order 𝑚  (e.g.  𝑒
1

𝑧 = 1 +
1

𝑧
+

1

(2!)𝑧2 + ⋯ +
1

(𝑛!)𝑧𝑛 + ⋯ ) then calculating the 

Laurent series about the singularity is the only general method to calculate the 

residue.  You can identify essential singularities by the fact that the Laurent series 

around the singularity will have an infinite number of terms of the form 

𝑎−𝑘(𝑧 − 𝑧0)−𝑘,  𝑘 ∈ ℤ+; where 𝑎−𝑘 ≠ 0. 

Ex.   Find the residue at 𝑧 = −2 and 𝑧 = 0 for 𝑓(𝑧) =
2𝑧+6

𝑧2+2𝑧
 without using 

partial fractions or Laurent series. 

  

𝑓(𝑧) =
2𝑧+6

𝑧2+2𝑧
=

2𝑧+6

𝑧(𝑧+2)
 ;   so 𝑓(𝑧) has a simple pole at 𝑧 = −2 and 𝑧 = 0.  

 Thus: 

𝑅𝑒𝑠(𝑓(𝑧); −2) = 𝑎−1 = lim
𝑧→𝑧0

((𝑧 − 𝑧0)𝑓(𝑧))) 

                                         = lim
𝑧→−2

(𝑧 + 2)(
2𝑧+6

𝑧(𝑧+2)
)   

                                               = lim
𝑧→−2

2𝑧+6

𝑧
= −1.      

 

𝑅𝑒𝑠(𝑓(𝑧); 0) = lim
𝑧→0

(𝑧) (
2𝑧+6

𝑧(𝑧+2)
)    

                        = lim
𝑧→0

2𝑧+6

𝑧+2
= 3.   
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 We can do the earlier example without using partial fractions or Laurent series. 

Ex.  Evaluate ∮
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
  where 𝐶 is the circle     

𝑎.  |𝑧| = 1  

𝑏.  |𝑧 + 2| = 1  

𝑐.  |𝑧| = 3  

 

         ∮
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
= 2𝜋𝑖(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠)  

 

a.  ∮  
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
= 2𝜋𝑖(𝑅𝑒𝑠(𝑓(𝑧); 0) = 2𝜋𝑖(3) = 6𝜋𝑖  

 

b.  ∮  
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
= 2𝜋𝑖(𝑅𝑒𝑠(𝑓(𝑧); −2) = 2𝜋𝑖(−1) = −2𝜋𝑖  

 

c. ∮  
2𝑧+6

𝑧2+2𝑧
𝑑𝑧

𝐶
= 2𝜋𝑖(𝑅𝑒𝑠(𝑓(𝑧); 0) + 𝑅𝑒𝑠(𝑓(𝑧); −2)) 

                        = 2𝜋𝑖(3 − 1) = 4𝜋𝑖.  
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Ex.  Find the residue at 𝑧 = 0 of 𝑓(𝑧) =
(cos (𝑧))𝑒𝑧

𝑧4 .  

 

𝑓(𝑧) has a pole of order 4 at 𝑧 = 0.  Thus we can use the formula 

   𝑎−1 =
1

(𝑚 − 1)!

𝑑(𝑚−1)

𝑑𝑧(𝑚−1)
((𝑧 − 𝑧0)𝑚𝑓(𝑧))   𝑎𝑡 𝑧 = 𝑧0 

where 𝑚 = 4 and 𝑧0 = 0. 

                        𝑅𝑒𝑠(𝑓(𝑧); 0) =
1

3!

𝑑3

𝑑𝑧3 ((𝑧4) (
(cos(𝑧))𝑒𝑧

𝑧4 ))   

                                                        =
1

6

𝑑3

𝑑𝑧3 [(cos(𝑧))(𝑒𝑧)]   evaluated at 𝑧 = 0.  

 

𝑑

𝑑𝑧
[(cos(𝑧))(𝑒𝑧)] = (cos(𝑧))(𝑒𝑧) − (sin(𝑧))(𝑒𝑧)  

 

𝑑2

𝑑𝑧2
[(cos(𝑧))(𝑒𝑧)] = (cos(𝑧))(𝑒𝑧) − (sin(𝑧))(𝑒𝑧) − (sin(𝑧))(𝑒𝑧)   

                                                  −(cos(𝑧))(𝑒𝑧)  

 

                                  = −2(sin(𝑧))(𝑒𝑧)   

 

𝑑3

𝑑𝑧3
[(cos(𝑧))(𝑒𝑧)] = −2(sin(𝑧))(𝑒𝑧) − 2(cos(𝑧))(𝑒𝑧)  

At  𝑧 = 0,   
𝑑3

𝑑𝑧3
[(cos(𝑧))(𝑒𝑧)] = −2;    

So we have:                 𝑅𝑒𝑠(𝑓(𝑧); 0) =
1

6
(−2) = −

1

3
 .  
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     In the case when  𝑓(𝑧) =
𝑁(𝑧)
𝐷(𝑧)

 , where 𝑁(𝑧) and 𝐷(𝑧) are analytic functions, 

and 𝐷(𝑧) has a simple zero at 𝑧 = 𝑧0, while 𝑁(𝑧0) ≠ 0 (thus 𝑓(𝑧) has a 

simple pole at 𝑧 = 𝑧0),  

             𝒂−𝟏 = 𝑹𝒆𝒔(𝒇(𝒛); 𝒛𝟎) = 𝐥𝐢𝐦
𝒛→𝒛𝟎

[(𝒛 − 𝒛𝟎)(𝒇(𝒛))] =
𝑵(𝒛𝟎)

𝑫′(𝒛𝟎)
 .   

This can be useful because sometimes it’s easier to calculate 
𝑁(𝑧0)

𝐷′(𝑧0)
  than 

lim
𝑧→𝑧0

[(𝑧 − 𝑧0)(𝑓(𝑧))].   For example, to calculate the residues of             

𝑓(𝑧) =
1

𝑧4+1
 , at the simple poles 𝑧 = 𝑒

𝜋𝑖

4  ,  𝑒
3𝜋𝑖

4  ,  𝑒
5𝜋𝑖

4 ,  𝑒
7𝜋𝑖

4 , it's easier to use 

this method.  We'll do this calculation in the next section. 

 

     We can see how to get this formula by using the Taylor series for 𝑁(𝑧) and 

𝐷(𝑧) near 𝑧 = 𝑧0. 

            𝑁(𝑧) = 𝑁(𝑧0) + 𝑁′(𝑧0)(𝑧 − 𝑧0) +
1

2
𝑁′′(𝑧0)(𝑧 − 𝑧0)2 + ⋯ 

            𝐷(𝑧) =                  𝐷′(𝑧0)(𝑧 − 𝑧0) +
1

2
𝐷′′(𝑧0)(𝑧 − 𝑧0)2 + ⋯   

 

So 𝑎−1 = lim
𝑧→𝑧0

(𝑧 − 𝑧0)
𝑁(𝑧)

𝐷(𝑧)
 

             = lim
       𝑧→𝑧0

(𝑧 − 𝑧0)
𝑁(𝑧0)+𝑁′(𝑧0)(𝑧−𝑧0)+

1

2
𝑁′′(𝑧0)(𝑧−𝑧0)2+⋯

𝐷′(𝑧0)(𝑧−𝑧0)+
1

2
𝐷′′(𝑧0)(𝑧−𝑧0)2+⋯

 

                =
𝑁(𝑧0)

𝐷′(𝑧0)
 . 
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Ex.  Find the residue at 𝑧 = 0 for 𝑓(𝑧) = csc(𝑧).   

 

                csc(𝑧) =
1

sin(𝑧)
     has a simple pole at  𝑧 = 0 because: 

                               =
1

𝑧−
𝑧3

3!
+⋯

=
1

𝑧(1−
𝑧2

3!
+⋯ )

 . 

          So  𝑎−1 = 𝑅𝑒𝑠(𝑓(𝑧); 0) =
𝑁(0)

𝐷′(0)
 ;      

          where 𝑁(𝑧) = 1,   𝐷(𝑧) = sin (𝑧),   𝐷′(𝑧) = cos (𝑧) 

          𝑎−1 = 𝑅𝑒𝑠(𝑓(𝑧); 0) =
𝑁(0)

𝐷′(0)
=

1

1
= 1.      

 

Ex.  Evaluate 
1

2𝜋𝑖
∮

3𝑧+1

𝑧(𝑧−1)3 𝑑𝑧
𝐶

 ; where 𝐶 is the circle |𝑧|=3.  

 

 𝑓(𝑧) =
3𝑧+1

𝑧(𝑧−1)
3  has a simple pole at 𝑧 = 0, and a pole of order 3 at 𝑧 = 1.  

     Both poles are inside the circle |𝑧|=3. 

     𝑎−1 = 𝑅𝑒𝑠(𝑓(𝑧); 0) = lim
𝑧→0

𝑧(
3𝑧+1

𝑧(𝑧−1)
3) = lim

𝑧→0

3𝑧+1

(𝑧−1)
3 = −1   

    𝑎−1 = 𝑅𝑒𝑠(𝑓(𝑧); 1) =
1

2!

𝑑2

𝑑𝑧
2 ((𝑧 − 1)3(

3𝑧+1

𝑧(𝑧−1)
3))        

                                         =
1

2

𝑑2

𝑑𝑧2 (3 +
1

𝑧
) =

1

2
(

2

𝑧3) = 1/𝑧3      

     At 𝑧 = 1;   𝑅𝑒𝑠(𝑓(𝑧); 1) = 1  ⟹  
1

2𝜋𝑖
∮

3𝑧+1

𝑧(𝑧−1)3 𝑑𝑧 =
𝐶

− 1 + 1 = 0. 
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Ex.  Evaluate 
1

2𝜋𝑖
∮ csc(𝑧) 𝑑𝑧

𝐶
 ;  where 𝐶 is the circle |𝑧| = 1.   

 

     As we saw in an earlier example, csc(𝑧) =
1

sin(𝑧)
 has a simple pole at 𝑧 = 0. 

    𝑅𝑒𝑠(𝑓(𝑧); 0) = 
𝑁(0)

𝐷′(0)
=

1

cos(0)
= 1.   Thus  

1

2𝜋𝑖
∮ csc(𝑧) 𝑑𝑧

𝐶
= 1.     

   

Ex.  Evaluate
1

2𝜋𝑖
 ∮ 𝑧2 sinh (

1

𝑧
) 𝑑𝑧

𝐶
 ;   where 𝐶 is the circle |𝑧| = 1.  

 

            sinh (
1

𝑧
) has an essential singularity (i.e. a pole of order ∞) at 𝑧 = 0.  

Thus we need to use its Laurent series to calculate the residue of 𝑧2 sinh (
1

𝑧
). 

sinh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

2
=

1

2
[(1 + 𝑧 +

𝑧2

2!
+

𝑧3

3!
+ ⋯ ) − (1 − 𝑧 +

𝑧2

2!
−

𝑧3

3!
+ ⋯ )] 

                   = 𝑧 +
𝑧3

3!
+

𝑧5

5!
+

𝑧7

7!
+ ⋯ +

𝑧2𝑛+1

(2𝑛+1)!
+ ⋯ 

   sinh (
1

𝑧
) =

1

𝑧
+

1

(3!)(𝑧3)
+

1

(5!)(𝑧5)
+ ⋯ +

1

((2𝑛+1)!)(𝑧2𝑛+1)
+ ⋯ 

𝑧2sinh (
1

𝑧
) = (𝑧2)(

1

𝑧
+

1

(3!)(𝑧3)
+

1

(5!)(𝑧
5

)
+ ⋯ +

1

((2𝑛+1)!)(𝑧2𝑛+1)
+ ⋯  

                       = 𝑧 +
1

(3!)𝑧
+

1

(5!)𝑧3 + ⋯ +
1

((2𝑛+1)!)(𝑧2𝑛−1)
 .                   

 

Thus 𝑎−1 = 𝑅𝑒𝑠(𝑓(𝑧); 0) =
1

3!
=

1

6
  ⟹   

1

2𝜋𝑖
∮ 𝑧2 sinh (

1

𝑧
) 𝑑𝑧

𝐶
=

1

6
  

 


