The Cauchy Residue Theorem

Let f(2) be analytic in a region D defined by 0 < |z — z5| < R and z = z,

is an isolated singularity of f (z). We know that f(Z) has a Laurent series given
by:

§ f(Z) dZ

f(2) = X822 an(z — zp)"; with an = C (z—zy)"

21l

where C is a simple closed contour lying in D and enclosing z,.

n=_1 a,(z — zy)™ is called the principal part of the series and a_y, the

coefficient of the term is called the residue of f (z) at z = z,.

Z—Zg
We will denote the residue of f(2) at z = z, by Res(f (2); z,).

We also know that for a simple closed curve C where z; is inside of C:

§. ——dz=0 ifn#l

(z—zo)"
=2mi ifn=1.
Thus we saw that: fﬁc f(2)dz = gﬁc Yz ean(z —zy)"dz = 2mi(a_;).

If there are multiple singularities in D, z4, Z,, ..., Zy, inside of C we can extend
this result as follows:

Theorem (Cauchy Residue Theorem); Let f(Z) be analytic inside a simple closed
contour C, except for a finite number of isolated singularities z4, Z5, ..., Z,,
located inside C. Then

$. f(2)dz = 2mi 37, ¢

where ¢; is the residue of f(z) at z = z;.



Proof: Let Cy, C5, ..., C,, be small nonintersecting circles centered at
Z1,Z9, -, Zp. Create crosscuts from C to Cq, Cs, ..., C}, (see diagram below).

N

Since f:jjf(z)dz + f;jjf(z)dz = 0, for each j we have:

45p f(z2)dz=10; where[=C—-C;—C,...—Cy;

by Cauchy's theorem.

Thus [. f(2)dz =X", fcj f(2)dz.



Using the Laurent expansion for f (z) around each singularity we get:

$. f(2)dz =2mi ¥7_, ¢

where ¢j is the residue of f(z) at z = z;.

1 1
Ex. Evaluateﬁgﬁc z%ezdz; where C is the unit circle |z| = 1.

The only singularity inside of C is the point Z = 0. So we need the Laurent series
around the point z = 0.
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z%ez = z2(1 +-+

1

_ 2 et L
=2tz ottt

Hence the Res(f(z);0) = %.

1 5 L 1
Thus — z%ezdz = -.
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2Z+6
dz where C is the circle

Ex. Evaluate Eﬁc

z242z

a. |z| =1

b. |z+2] =1

c. |z| =3.
) ) ] ) 2z+6
First use partial fractions to get the Laurent series for — .

z°+2z

2z+6 _ 2z+6 A n B A(z+2)+Bz
2242z z(z+2) z  z+2  z(z+2)

22+ 6 =A(z+ 2) + Bz

Atz = 0; 6 =24; soA =3.

Atz = —2; 2(-2)+6 =—-2B; soB = -1.
2Z+6 3 1 ] o
> = — — ——; hassingularitiesat z = 0, —2.
zZ<+2z Z Z+2
M N— |Z| =3
|z +[2] =1 A |zl =
, . 4 ! S % ‘




a. Thecircle |z| = 1 encloses only the singularity at z = 0, thus

$. ——=dz = (2mi)Res(f(2); 0).

zZ242z

2Z+6 3 1

> = ————around z = 0.
zZ“+2z Z Z+2

1 . , , _ , 2Z+6
p analytic so won’t contribute anything to the residue of 22127 at
z=0.
3
a_q for the Laurent series of; around z = Qs 3.
2z+6
Thus Res(f(z);0) =3. s dz = 2mi(3) = 6.
us Res(f(2); 0) = 3. So f, Zm 3)
b. Thecircle |z + 2] = 1 encloses only the singularity at Z = —2, thus
2z+6
dz = (2mi)Res(f(z); =2).
§, 22 d7 = (2n)Res(f(2); —2)

) 2z+6 3 1
So we want the Laurent series for f(Z) = = — — ——around
z’+42z z  z+2

z=—2.

— is analytic around Z = —2 so won’t contribute anything to the residue

iff(z) atz = —2.

a_4 for the Laurent series around z = —2, is —1 (the coefficient of the

1
Z_I_—Zterm). Thus

2Z+6
Z2427

Res(f(z); —=2) = —1 and gSC dz = 2mi(—1) = —2mi.



c. Thecircle |z| = 3 encloses both singularities, thus

22+6d = 2mi 0 2
jéc 221 27 z = 2mi[Res(f(2);0) + Res(f(2); —2)]

= 2mi(3 — 1) = 4nmi.

Def. Let f(2) = ( h(z))m , where h(z) is analytic in a neighborhood of z = Zz,
Z—ZO

m a positive integer, and h(zy) # 0. We then say f(z) has a pole of order m.

If f(z) has a pole of order m then h(z) is analytic near z = z, and we can
write down its Taylor series:

(m-1)
h(z) = h(zy) + h' (zg)(z — zp) + - + h 1()Z|0) (z—2p)™ 1 + -

Now let’s divide by (z — z)™ to get an expression for f(z).

__h@ Rz h'(zo) | hMm=D(z,)
(@) = o = Gmam T Gzt T i)
(m-
Soa_q for f(z)is ki ()Z!O), or (for a pole of order m):
1 4™V

a_1 = (m—1)! gD ((Z Zo)mf(z)) at z = z,.

For a simple pole, i.e. m = 1, this formula becomes:

a_y = lim((z - 20)f @)).



If f (2) has an essential singularity, i.e an isolated singularity that is not a pole of

1

Z 1
orderm (eg. ez =1 +E+ (2') >+ - + ') —
Laurent series about the singularity is the only general method to calculate the
residue. You can identify essential singularities by the fact that the Laurent series

around the singularity will have an infinite number of terms of the form
a_,(z—2,)7%, k € Z%; wherea_, # 0.

+ -+ then calculating the

2z+6

Ex. Find the residueat z = —2and z = 0 for f(2) = —

without using

partial fractions or Laurent series.

2z+6 __ 2z+6
f2) = 2242z z(z+2)

; 50 f(z) hasasimplepoleatz = —2andz = 0.
Thus:
Res(f(2); =2) = a_y = lim ((z ~ 2)f (2)))

2z+6

= Zl_i)lzlz(z + 2)(Z(Z+2))
= lim 2= 1,
z—-=2 Z
) 2z+6
Res(f(z);0) = y_r)r(l)(z) (z(z+2))
— lim 2z+6 -3

z—0 Z+2



We can do the earlier example without using partial fractions or Laurent series.

Ex. Evaluate gﬁc 2222:262 dz where C is the circle
a. |z| =1
b. |z+2|=1
c. |z| =3
$. 2222:262 dz = 2mi(sum of residues)
2z+6 . . .
a. 4, z22+2z dz = 2mi(Res(f(2); 0) = 2mi(3) = 6mi

2z+6 . . .
b. gﬁc z22+_2zdz = 2mi(Res(f (z); —2) = 2mi(—1) = —2mi

6. > dz = 2mi(Res(f (2); 0) + Res(f(2);—2))
= 2mi(3 — 1) = 4.

o



(cos (z))e

Ex. Find the residueatz = 0 off(Z) = s

f(z) has a pole of order 4 at z = 0. Thus we can use the formula

1 dmy
)' dzm-1) ((Z - ZO)mf(Z)) at z = zg

a_1 = (m

wherem = 4 and z, = 0.
Res(f(2); 0) = 5 S (( 4) ((Cos(Z))e )

6 dz 7,3 [(COS(Z))(GZ)] evaluated at z = 0.

2 [(cos(2)) ()] = (cos(@))(e?) — (sin(2))(e?)
;_zzz [(cos(2))(e?)] = (cos(2))(e?) — (sin(z))(e*) — (sin(z))(e?)
~(cos(@)(e?)
= —2(sin(2))(e?)
L [(cos(2))(e5)] = ~2(sin(2))(e) — 2(cos(2))(e?)

Atz=0, (j— [(cos(2))(e?)] = —2;

So we have: Res(f(2);0) = %(_2) - -
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In the case when f(z) = % , where N (z) and D(z) are analytic functions,

and D (z) has a simple zero at Z = z,, while N(zy) # 0 (thus f(2) has a
simple pole at z = Zz,),

a_1 = Res(f(2); 2) = lim[(z ~ 20) (f(D)] = 75

N(zo)

D'(zp)
lim [(Z — ZO)(f(Z))]. For example, to calculate the residues of
Z—Zg

This can be useful because sometimes it’s easier to calculate than

1 mi 3wl Smi 7mi
f(Z) = 411’ atthesimplepolesz = e+, e 4 , e 4, e 4 ,it's easier to use

this method. We'll do this calculation in the next section.

We can see how to get this formula by using the Taylor series for N(z) and
D(z) near z = z,.

N(2) = N(zo) + N'(20)(z = 20) + EN"(20) (2 = 70)? + -~

D(z) = D'(zy)(z — zp) + %D”(ZO)(Z —Zg)% + -

: N(z)
So_q = ZIH? (z — zp) Dé)
—Z

N(20)+N'(29)(z-20) +5N"" (20) (z-20)? + -

B AR e o P o o e

_ N(zy)
D'(zp)




Ex. Find the residue at z = 0 for f(z) = csc(2).

1
csc(z) = Sn(z) has a simple pole at z = 0 because:

(2)
. 1 . 1
z—§+ z(1—§+ )
N(O
So a_; = Res(f(2);0) = D((O))

where N(z) =1, D(z) =sin (z), D'(z) = cos (2)

N(O
a_, = Res(f(z);0) = D((O)) 1=1.

3z+1
C z(z-1)3

1
Ex. EvaIuatez— dz ; where C is the circle | z|=3.

3z+1

f(z) = = has a simple pole at z = 0, and a pole of order
Both poles are inside the circle | z|=3.
. 3z+1 i 3z+1
a_; = Res(f(z);0) = lim z( z 5) = =

z-0 z(z—-1)

z—>0 (z— 1)

@y = Res(F( 1) = 35 (G2 - 1P 2L

1L (3 2(E) - 1

1 3z+1
Atz =1; Res(f(2);1) =1 = — gﬁC T dz =

11

3atz = 1.

—-1+1=0.
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1 . . —
EX. Evaluatez—m_fﬁc csc(z) dz ; where C is the circle |z| = 1.

As we saw in an earlier example, csc(z) = has a simple pole at z = 0.

1
sin(z)
N(O) 1
D'(0)  cos(0)

Res(f(2);0) =

1
= 1. Thus ——§, csc(z)dz = 1.

1 . 1
Ex. EvaIuatez—m_ gSC z? sinh (Z) dz; where C is thecircle |z]| = 1.

: 1
sinh (;) has an essential singularity (i.e. a pole of order ) at z = 0.

) 1
Thus we need to use its Laurent series to calculate the residue of z2 sinh (Z)

_ e?—e? 1 z2 z3 z2 z3
sinh(z) = =-[(1+z+=+=+ |- |1l-z+—=—=+|]

2 2 2! 3! 2! 3!
A RS Aateg
sinh G) =zt (3!)1(23) T (5!)1(25) o ((2n+1)!1)(22”+1) te
2%sinh () = (22 + (3!)1(23) + (5!)1(25) bt ((2n+1);1)(zzn+1) L
— 4 — 1 4. !

Gz Ty T ((2n+D!)(z2n1)

11 1 (1 1
Thusa_; = Res(f(2);0) = =- = ——§, z*sinh (;) dz = -



