Laurent Series

 Taylor series gives us a way to express an analytic function as a power series about a point $z = z_0$. However, not every function is analytic. If a function is analytic except at a finite number of points we can express the function as a sum of both positive and negative powers of $z - z_0$. We will be able to do this for functions that are analytic in and on an annulus, $R_1\leq |z-z_0|\leq R_2.$ This series is called a Laurent Series.

Theorem (Laurent Series) A function $f(z)$ analytic in an annulus

 $R_1 \leq |z-z_0| \leq R_2$ (where R_1 could be 0 and/or R_2 could be $\infty)$ may be represented by:

$$
f(z) = \sum_{n=-\infty}^{n=\infty} a_n (z - z_0)^n
$$

In a region $R_1 < {R_1}' \le |z - z_0| \le {R_2}' < R_2$, where

$$
a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz
$$

and C is any simple closed contour in the annulus that encloses the inner circle $|z - z_0| = R_1.$

This theorem is a consequence of Cauchy's integral formula and Cauchy's theorem.

- 1. The coefficient of the 1 $z-z_0$ term is special and is called the **residue** of the function $f(z)$ at $z = z_0$.
- 2. The negative powers of the Laurent series are referred to as the **principal part** of $f(z)$.
- 3. If $f(z)$ is analytic everywhere inside C, then by Cauchy's theorem

$$
a_j = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{j+1}} = 0 \text{ for } j < 0
$$

Because $f(z)(z-z_0)^k$ is analytic when k is a non-negative integer.

- 4. In practice, Laurent series are often calculated from related Taylor series as the coefficients in the previous theorem, represented as integrals, can be cumbersome to calculate.
- 5. The Laurent series converges uniformly to $f(z)$ in $R_1 < R_1' \leq |z - z_0| \leq R_2' < R_2$. Thus we can integrate and differentiate a Laurent series term by term in this region.
- 6. The Laurent series for a given annulus is unique. Thus if we can calculate a Laurent series for a function $f(z)$ using an appropriate Taylor series, then by uniqueness, that is the only Laurent series for $f(z)$ on a give annulus. Note: the annulus we use for the Laurent series matters. Different annuli can have different Laurent series for the same function.
- Ex. Calculate the Laurent series for $f(z) = e$ 1 \overline{z} .

We know that $e^z = \sum_{i=0}^\infty \frac{z^j}{i!}$ j! ∞ $\sum_{j=0}^{\infty} \frac{z^j}{j!}$ converges for all $z \in \mathbb{C}$.

Thus substituting 1 Z for z in this formula we get:

$$
e^{\frac{1}{z}} = \sum_{j=0}^{\infty} \frac{1}{j!} \left(\frac{1}{z}\right)^j = \sum_{j=0}^{\infty} \frac{1}{(j!)(z)^j}
$$

which converges for $|z| > 0$.

- Ex. Calculate the Laurent series for $f(z) = \frac{1}{1+z}$ $\frac{1}{1+z}$ on a. $|z| < 1$
	- b. $|z| > 1$

a. We know the Taylor series for $f(z) = \frac{1}{z+1}$ $\frac{1}{1+z}$ for $|z| < 1$ is 1 $1+z$ $=\sum_{n=0}^{\infty}(-1)^{n}z^{n}$ $_{n=0}^{\infty}(-1)^{n}z^{n}$.

Since $f(z)$ is analytic in this region, the Laurent series is the Taylor series.

b. For $|z| > 1$ we get the Laurent series as follows:

$$
\frac{1}{1+z} = \frac{1}{z(1+\frac{1}{z})} = \frac{1}{z} \left(\frac{1}{1+\frac{1}{z}} \right) = \frac{1}{z} \sum_{j=0}^{\infty} \frac{(-1)^j}{z^j} = \sum_{j=0}^{\infty} \frac{(-1)^j}{z^{j+1}}.
$$

Notice that the Laurent series for $f(z) = \frac{1}{1+z}$ $\frac{1}{1+z}$ is different on the different annuli.

Ex. Find the Laurent series about the indicated singularity and find the integral around a unit circle centered at the singularity for:

a.
$$
\frac{e^{2z}}{(z-1)^3}
$$
; $z = 1$

b.
$$
(z-3)\sin(\frac{1}{z+2}); \quad z=-2
$$

a. Let $u = z - 1$ to transform the singularity to $u = 0$.

$$
\frac{e^{2z}}{(z-1)^3} = \frac{e^{2(u+1)}}{u^3} = \frac{e^{2u+2}}{u^3} = \frac{e^2 e^{2u}}{u^3}
$$

$$
= \frac{e^2}{u^3} [1 + (2u) + \frac{(2u)^2}{2!} + \frac{(2u)^3}{3!} + \cdots]
$$

$$
= \left[\frac{e^2}{u^3} + \frac{2e^2}{u^2} + \frac{2e^2}{u} + \frac{4e^2}{3} + \cdots + \frac{e^2 2^n}{n!} u^{n-3} + \cdots\right].
$$

Now transform the answer back to z :

$$
\frac{e^{2z}}{(z-1)^3} = \frac{e^2}{(z-1)^3} + \frac{2e^2}{(z-1)^2} + \frac{2e^2}{z-1} + \frac{4e^2}{3} + \dots + \frac{e^2 2^n}{n!} (z-1)^{n-3} + \dots
$$

$$
\oint_C \frac{e^{2z}}{(z-1)^3} dz =
$$
\n
$$
\oint_C \left(\frac{e^2}{(z-1)^3} + \frac{2e^2}{(z-1)^2} + \frac{2e^2}{z-1} + \frac{4e^2}{3} + \dots + \frac{e^2 2^n}{n!} (z-1)^{n-3} + \dots \right) dz;
$$

where C is $|z - 1| = 1$.

Recall that $\oint_C (z-a)^n dz = 0$ if $n \neq -1$ $= 2\pi i$ if $n = -1$. where C is $|z - a| = R$.

Thus we have:

 $\oint_C \frac{e^{2z}}{(z-1)}$ $\int_{C} \frac{e^{-2z}}{(z-1)^3} dz = 2e^2(2\pi i) = 4e^2\pi i.$ (Also can be done by Cauchy's integral formula).

b. To find the Laurent series for $f(z) = (z - 3)sin(\frac{1}{z - 1})$ $\frac{1}{z+2}$), make the substitution $u = z + 2$ to move the singularity to $u = 0$.

$$
(z-3)\sin\left(\frac{1}{z+2}\right) = (u-5)\sin\left(\frac{1}{u}\right).
$$

Since $\sin(z) = z - \frac{z^3}{2!}$ $rac{z^3}{3!} + \frac{z^5}{5!}$ $\frac{z^5}{5!} - \frac{z^7}{7!}$ $\frac{2}{7!} + \cdots$

$$
\sin\left(\frac{1}{u}\right) = \frac{1}{u} - \frac{1}{3!(u)^3} + \frac{1}{5!(u)^5} - \frac{1}{7!(u)^7} + \cdots
$$

$$
(u-5)\sin\left(\frac{1}{u}\right) = (u-5)\left(\frac{1}{u}-\frac{1}{3!(u)^3}+\frac{1}{5!(u)^5}-\frac{1}{7!(u)^7}+\cdots\right)
$$

$$
= (1 - \frac{5}{u} - \frac{1}{3!(u^2)} + \frac{5}{3!(u^3)} + \cdots)
$$

$$
(z-3)\sin\left(\frac{1}{z+2}\right) = 1 - \frac{5}{z+2} - \frac{1}{3!\left((z+2)^2\right)} + \frac{5}{3!\left((z+2)^3\right)} + \cdots
$$

Now integrating around the circle $C: |z + 2| = 1$

$$
\oint_C (z-3)\sin\left(\frac{1}{z+2}\right)dz = \oint_C \left(1 - \frac{5}{z+2} - \frac{1}{3!((z+2)^2)} + \frac{5}{3!((z+2)^3)} + \cdots \right)dz
$$

Again:
$$
\oint_C (z-a)^n dz = 0 \quad \text{if } n \neq -1
$$

$$
= 2\pi i \quad \text{if } n = -1.
$$

So we get:

$$
\oint_C (z-3) \sin\left(\frac{1}{z+2}\right) dz = -5(2\pi i) = -10\pi i.
$$

Ex. Expand
$$
f(z) = \frac{1}{(z+1)(z+3)}
$$
 in a Laurent series in powers of *z* valid for

\n\n- a. $|z| < 1$
\n- b. $1 < |z| < 3$
\n- c. $|z| > 3$
\n

The easiest way to do this problem is with partial fractions.

$$
\frac{1}{(z+1)(z+3)} = \frac{A}{z+1} + \frac{B}{z+3} = \frac{A(z+3)+B(z+1)}{(z+1)(z+3)}
$$

So $1 = A(z+3) + B(z+1)$
At $z = -3$; $1 = B(-2)$ or $B = -\frac{1}{2}$
At $z = -1$; $1 = A(2)$ or $A = \frac{1}{2}$.
So we get:
$$
\frac{1}{(z+1)(z+3)} = \frac{1}{2} \left(\frac{1}{z+1}\right) - \frac{1}{2} \left(\frac{1}{z+3}\right).
$$

a. If $|z| < 1$, both $\frac{1}{z}$ $z+1$ and 1 $z+3$ are analytic so we can take their Taylor series, multiply by a constant, and subtract them.

$$
\frac{1}{2} \left(\frac{1}{z+1} \right) = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n z^n ;
$$

$$
\frac{1}{2} \left(\frac{1}{z+3} \right) = \left(\frac{1}{2} \right) \left(\frac{1}{3 \left(1 + \frac{z}{3} \right)} \right) = \left(\frac{1}{6} \right) \left(\frac{1}{1 + \frac{z}{3}} \right)
$$

$$
= \frac{1}{6} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{3} \right)^n = \frac{1}{6} \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} z^n
$$

$$
\frac{1}{(z+1)(z+3)} = \frac{1}{2} \left(\frac{1}{z+1} \right) - \frac{1}{2} \left(\frac{1}{z+3} \right)
$$

$$
=\frac{1}{2}\sum_{n=0}^{\infty}(-1)^{n}z^{n}-\frac{1}{6}\sum_{n=0}^{\infty}\frac{(-1)^{n}}{3^{n}}z^{n}
$$

$$
= \sum_{n=0}^{\infty} \frac{1}{2} (-1)^n (1 - \left(\frac{1}{3}\right) \frac{1}{3^n}) z^n
$$

$$
=\sum_{n=0}^{\infty} \frac{1}{2} (-1)^n (1 - \frac{1}{3^{n+1}}) z^n; \quad \text{for } |z| < 1.
$$

 This is the Taylor series as well as the Laurent series for 1 $(z+1)(z+3)$ since it's analytic for $|z| < 1$.

b. For $1 < |z| < 3$ we again use the partial fractions expression:

$$
\frac{1}{(z+1)(z+3)} = \frac{1}{2} \left(\frac{1}{z+1} \right) - \frac{1}{2} \left(\frac{1}{z+3} \right).
$$

We need to find a Laurent (or Taylor) series that converges for each term in $1 < |z| < 3$.

For $|z| > 1$ we get the Laurent series for $\frac{1}{1+z}$ as follows: $\sqrt{2}$

$$
\frac{1}{1+z} = \frac{1}{z(1+\frac{1}{z})} = \frac{1}{z} \left(\frac{1}{1+\frac{1}{z}}\right) = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n}{z^n} = \sum_{j=0}^{\infty} \frac{(-1)^n}{z^{n+1}}; \text{ Thus}
$$

$$
\frac{1}{2}\left(\frac{1}{z+1}\right) = \frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^n}{z^{n+1}}.
$$

For $|z| < 3$ we know the Taylor series for $\frac{1}{z}$ $z+3$ converges there, so from part "a" we have:

$$
\frac{1}{2} \left(\frac{1}{z+3} \right) = \frac{1}{6} \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} z^n
$$

Thus both of these expressions converge for $1 < |z| < 3$, now subtract them.

$$
\frac{1}{(z+1)(z+3)} = \frac{1}{2} \left(\frac{1}{z+1}\right) - \frac{1}{2} \left(\frac{1}{z+3}\right)
$$

$$
= \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{n+1}} - \frac{1}{6} \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} z^n
$$

$$
= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2)z^{n+1}} - \sum_{n=0}^{\infty} \frac{(-1)^n}{(2)3^{n+1}} z^n
$$

$$
= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2)z^{n+1}} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2)3^{n+1}} z^n.
$$

 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ $2z^{n+1}$ ∞ $\sum_{n=0}^{\infty} \frac{z^{n}}{2z^{n+1}}$ is the principal part of the Laurent series. c. For $|z| > 3$ we again use the partial fraction expression:

$$
\frac{1}{(z+1)(z+3)} = \frac{1}{2} \left(\frac{1}{z+1}\right) - \frac{1}{2} \left(\frac{1}{z+3}\right)
$$

We need to find series that are valid for each term when $|z| > 3$.

 We know that 1 $rac{1}{2}$ $\left(\frac{1}{z+1}\right)$ $\left(\frac{1}{z+1}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2)z^{n+1}}$ $(2)z^{n+1}$ ∞ $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2)z^{n+1}}$ is valid for $|z| > 1$, so it's also valid for $|z| > 3$.

We have to find a series that's valid for
$$
\frac{1}{2} \left(\frac{1}{z+3} \right)
$$
 for $|z| > 3$. Notice:
\n
$$
\frac{1}{z+3} = \frac{1}{z(1+\frac{3}{z})} = \frac{1}{z} \left(\frac{1}{1+\frac{3}{z}} \right);
$$
\n
$$
= \frac{1}{z} \sum_{n=0}^{n=\infty} (-1)^n \left(\frac{3}{z} \right)^n
$$
\n
$$
= \sum_{n=0}^{\infty} \frac{(-1)^n (3)^n}{z^{n+1}} \quad \text{converges for } |z| > 3.
$$
\nSo\n
$$
\frac{1}{2} \left(\frac{1}{z+3} \right) = \sum_{n=0}^{\infty} \frac{(-1)^n (3)^n}{(2)z^{n+1}}.
$$

Subtracting the two expressions we get:

$$
\frac{1}{(z+1)(z+3)} = \frac{1}{2} \left(\frac{1}{z+1}\right) - \frac{1}{2} \left(\frac{1}{z+3}\right)
$$

$$
= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2)z^{n+1}} - \sum_{n=0}^{\infty} \frac{(-1)^n (3)^n}{(2)z^{n+1}}
$$

$$
= \sum_{n=0}^{\infty} \frac{(-1)^n (1-3^n)}{(2)z^{n+1}} = \frac{1}{z^2} - \frac{4}{z^3} + \frac{13}{z^4} + \dots + \frac{(-1)^n (1-3^n)}{(2)z^{n+1}} + \dots
$$

which converges for $|z| > 3$.

Ex. Evaluate
$$
\oint_C \frac{1}{z^3(\cos(z))} dz
$$
; where *C* is the circle $|z| = 1$.

Let's find a Laurent series for
$$
\frac{1}{z^3(\cos(z))}
$$

$$
\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots
$$

$$
\frac{1}{\cos(z)} = \frac{1}{1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots} = \frac{1}{1 - (\frac{z^2}{2!} - \frac{z^4}{4!} + \frac{z^6}{6!} - \dots)}
$$

$$
= 1 + (\frac{z^2}{2!} - \frac{z^4}{4!} + \frac{z^6}{6!} - \dots) + (\frac{z^2}{2!} - \frac{z^4}{4!} + \frac{z^6}{6!} - \dots)^2 + \dots
$$

$$
= 1 + \frac{z^2}{2} + \text{higher power terms.}
$$

.

Note: It can be shown that if $|z| < 1$, then $\left| \frac{z^2}{2!} \right|$ $rac{z^2}{2!} - \frac{z^4}{4!}$ $rac{z^4}{4!} + \frac{z^6}{6!}$ $\frac{2}{6!}$ – … $|$ < 1, so the series on the RHS converges.

$$
\frac{1}{z^3(\cos(z))} = \left(\frac{1}{z^3}\right)(1 + \frac{z^2}{2} + \text{higher powers}) = \frac{1}{z^3} + \frac{1}{2z} + \text{higher powers}
$$

Now integrating around the unit circle about the origin we get:

$$
\oint_C \frac{1}{z^3(\cos(z))} dz = \oint_C \left(\frac{1}{z^3} + \frac{1}{2z} + \text{higher power terms}\right) dz
$$
\n
$$
= \frac{1}{2}(2\pi i) = \pi i
$$

because
$$
\oint_C z^n dz = 0
$$
 if $n \neq -1$
= $2\pi i$ if $n = -1$.