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                                                 Laurent Series 

 

     Taylor series gives us a way to express an analytic function as a power series 

about a point 𝑧 = 𝑧0.  However, not every function is analytic.  If a function is 

analytic except at a finite number of points we can express the function as a sum 

of both positive and negative powers of 𝑧 − 𝑧0.  We will be able to do this for 

functions that are analytic in and on an annulus, 𝑅1 ≤ |𝑧 − 𝑧0| ≤ 𝑅2.  This 

series is called a Laurent Series. 

 

 

 

Note:  𝑅1 could be 0 and/or 𝑅2  

could be ∞. 

 

 

 

 

Theorem (Laurent Series) A function 𝑓(𝑧) analytic in an annulus 

 𝑅1 ≤ |𝑧 − 𝑧0| ≤ 𝑅2 (where 𝑅1 could be 0 and/or 𝑅2 could be ∞) may be 

represented by: 

                               𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛𝑛=∞
𝑛=−∞  

In a region 𝑅1 < 𝑅1′ ≤ |𝑧 − 𝑧0| ≤ 𝑅2′ < 𝑅2, where 

                              𝑎𝑛 =
1

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧−𝑧0)𝑛+1 𝑑𝑧
𝐶

 

and 𝐶 is any simple closed contour in the annulus that encloses the inner circle 

|𝑧 − 𝑧0| = 𝑅1. 

𝑅1 

𝑅2 

𝐶1 

𝐶2 



2 
 

This theorem is a consequence of Cauchy's integral formula and Cauchy's 

theorem. 

 

1.  The coefficient of the 
1

𝑧−𝑧0
  term is special and is called the residue of the 

function 𝑓(𝑧) at 𝑧 = 𝑧0. 

 

 

2. The negative powers of the Laurent series are referred to as the principal 

part of 𝑓(𝑧). 

 

 

3. If 𝑓(𝑧) is analytic everywhere inside 𝐶, then by Cauchy’s theorem  

 

                     𝑎𝑗 =
1

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧−𝑧0)𝑗+1𝐶
= 0 for 𝑗 < 0 

            Because 𝑓(𝑧)(𝑧 − 𝑧0)𝑘 is analytic when 𝑘 is a non-negative integer. 

 

 

4. In practice, Laurent series are often calculated from related Taylor series as 

the coefficients in the previous theorem, represented as integrals, can be 

cumbersome to calculate. 

 

 

5. The Laurent series converges uniformly to 𝑓(𝑧) in 

 𝑅1 < 𝑅1′ ≤ |𝑧 − 𝑧0| ≤ 𝑅2′ < 𝑅2.  Thus we can integrate and 

differentiate a Laurent series term by term in this region. 
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6. The Laurent series for a given annulus is unique.  Thus if we can calculate a 

Laurent series for a function 𝑓(𝑧) using an appropriate Taylor series, then 

by uniqueness, that is the only Laurent series for 𝑓(𝑧) on a give annulus. 

Note: the annulus we use for the Laurent series matters.  Different annuli 

can have different Laurent series for the same function.   

 

 

Ex.  Calculate the Laurent series for 𝑓(𝑧) = 𝑒
1

𝑧.  

 

We know that 𝑒𝑧 = ∑
𝑧𝑗

𝑗!
∞
𝑗=0  converges for all 𝑧 ∈ ℂ.   

Thus substituting 
1

𝑧
 for 𝑧 in this formula we get: 

                             𝑒
1

𝑧 = ∑
1

𝑗!
(

1

𝑧
)𝑗 =∞

𝑗=0  ∑
1

(𝑗!)(𝑧)𝑗
∞
𝑗=0   

which converges for |𝑧| > 0.  

 

 

Ex.  Calculate the Laurent series for 𝑓(𝑧) =
1

1+𝑧
 on    

a. |𝑧| < 1 

b. |𝑧| > 1 
 

a. We know the Taylor series for 𝑓(𝑧) =
1

1+𝑧
 for |𝑧| < 1 is 

             
1

1+𝑧
= ∑ (−1)𝑛𝑧𝑛∞

𝑛=0  .      

 

Since 𝑓(𝑧) is analytic in this region, the Laurent series is the Taylor series.  
 

 

 

b. For |𝑧| > 1 we get the Laurent series as follows: 

                  
1

1+𝑧
=

1

𝑧(1+
1

𝑧
)

=
1

𝑧
(

1

1+
1

𝑧

) =
1

𝑧
∑

(−1)𝑗

𝑧𝑗
∞
𝑗=0 = ∑

(−1)𝑗

𝑧𝑗+1
∞
𝑗=0  .       
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Notice that the Laurent series for 𝑓(𝑧) =
1

1+𝑧
   is different on the different 

annuli. 

 

 

Ex.  Find the Laurent series about the indicated singularity and find the integral 

around a unit circle centered at the singularity for: 

a.     
𝑒2𝑧

(𝑧−1)3 ;     𝑧 = 1  

 

b.     (𝑧 − 3)sin (
1

𝑧+2
) ;     𝑧 = −2    

 

a. Let 𝑢 = 𝑧 − 1 to transform the singularity to 𝑢 = 0. 

      
𝑒2𝑧

(𝑧−1)3 =
𝑒2(𝑢+1)

𝑢3 =
𝑒2𝑢+2

𝑢3 =
𝑒2𝑒2𝑢

𝑢3     

 

                 =
𝑒2

𝑢3 [1 + (2𝑢) +
(2𝑢)2

2!
+

(2𝑢)3

3!
+ ⋯ ]  

 

                      = [
𝑒2

𝑢3 +
2𝑒2

𝑢2 +
2𝑒2

𝑢
+

4𝑒2

3
+ ⋯ +

𝑒22𝑛

𝑛!
𝑢𝑛−3 + ⋯ ].     

 
Now transform the answer back to 𝑧:   

 

𝑒2𝑧

(𝑧 − 1)3
=

𝑒2

(𝑧 − 1)3
+

2𝑒2

(𝑧 − 1)2
+

2𝑒2

𝑧 − 1
+

4𝑒2

3
+ ⋯ +

𝑒22𝑛

𝑛!
(𝑧 − 1)𝑛−3 + ⋯ 

 
 

∮
𝑒2𝑧

(𝑧−1)3 𝑑𝑧 =
𝐶

  

 ∮ (
𝑒2

(𝑧−1)3 +
2𝑒2

(𝑧−1)2 +
2𝑒2

𝑧−1
+

4𝑒2

3
+ ⋯ +

𝑒22𝑛

𝑛!
(𝑧 − 1)𝑛−3 + ⋯

𝐶
)𝑑𝑧;  

 

where 𝐶 is |𝑧 − 1| = 1. 
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Recall that ∮ (𝑧 − 𝑎)𝑛𝑑𝑧 = 0
𝐶

        𝑖𝑓 𝑛 ≠ −1    

                                                        = 2𝜋𝑖    𝑖𝑓 𝑛 = −1.    

where 𝐶 is |𝑧 − 𝑎| = 𝑅. 

 
Thus we have: 

∮  
𝑒2𝑧

(𝑧−1)3 𝑑𝑧 = 2𝑒2(2𝜋𝑖) = 4𝑒2𝜋𝑖.
𝐶

     (Also can be done by Cauchy’s                    

                                                                                   integral formula). 
 
 
 

𝑏.   To find the Laurent series for 𝑓(𝑧) = (𝑧 − 3)sin (
1

𝑧+2
), make the     

       substitution 𝑢 = 𝑧 + 2 to move the singularity to 𝑢 = 0.  

 

(𝑧 − 3) sin (
1

𝑧+2
) = (𝑢 − 5)sin (

1

𝑢
).    

 

            Since          sin(𝑧) = 𝑧 −
𝑧3

3!
+

𝑧5

5!
−

𝑧7

7!
+ ⋯    

 

                            sin (
1

𝑢
) =

1

𝑢
−

1

3!(𝑢)3 +
1

5!(𝑢)5 −
1

7!(𝑢)7 + ⋯  

 

           (𝑢 − 5) sin (
1

𝑢
) = (𝑢 − 5)(

1

𝑢
−

1

3!(𝑢)
3 +

1

5!(𝑢)
5 −

1

7!(𝑢)
7 + ⋯ )   

 

                                         = (1 −
5

𝑢
−

1

3!(𝑢2)
+

5

3!(𝑢3)
+ ⋯ )    

 

        (𝑧 − 3) sin (
1

𝑧+2
) = 1 −

5

𝑧+2
−

1

3!((𝑧+2)
2

)
+

5

3!((𝑧+2)
3

)
+ ⋯   .    
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             Now integrating around the circle 𝐶:   |𝑧 + 2| = 1  

 

 ∮ (𝑧 − 3) sin (
1

𝑧+2
) 𝑑𝑧 = ∮ (1 −

5

𝑧+2
−

1

3!((𝑧+2)2)
+

5

3!((𝑧+2)3)
+ ⋯ )

𝐶𝐶
𝑑𝑧   

           

            Again:   ∮  (𝑧 − 𝑎)
𝑛

𝑑𝑧 = 0           𝑖𝑓 𝑛 ≠ −1
𝐶

    

                                                      = 2𝜋𝑖       𝑖𝑓 𝑛 = −1. 

        So we get: 

            ∮ (𝑧 − 3) sin (
1

𝑧+2
) 𝑑𝑧 = −5(2𝜋𝑖) = −10𝜋𝑖

𝐶
. 

 

 

Ex.  Expand 𝑓(𝑧) =
1

(𝑧+1)(𝑧+3)
 in a Laurent series in powers of 𝑧 valid for 

a. |𝑧| < 1 
b. 1 < |𝑧| < 3              
c. |𝑧| > 3. 

 

The easiest way to do this problem is with partial fractions. 

1

(𝑧+1)(𝑧+3)
=

𝐴

𝑧+1
+

𝐵

𝑧+3
=

𝐴(𝑧+3)+𝐵(𝑧+1)

(𝑧+1)(𝑧+3)
  

So   1 = 𝐴(𝑧 + 3) + 𝐵(𝑧 + 1) 

At  𝑧 = −3;     1 = 𝐵(−2)   or 𝐵 = −
1

2
 

At  𝑧 = −1;     1 = 𝐴(2)       or  𝐴 =
1

2
 .        

So we get:                  
1

(𝑧+1)(𝑧+3)
=

1

2
(

1

𝑧+1
) −

1

2
(

1

𝑧+3
).       
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a. If  |𝑧| < 1, both 
1

𝑧+1
  and  

1

𝑧+3
  are analytic so we can take their Taylor 

series, multiply by a constant, and subtract them.  
 

  
1

2
(

1

𝑧+1
) =

1

2
∑ (−1)𝑛𝑧𝑛∞

𝑛=0  ;      

      
 

            
1

2
(

1

𝑧+3
) = (

1

2
) (

1

3(1+
𝑧

3
)
) = (

1

6
) (

1

1+
𝑧

3

) 

                           =
1

6
∑ (−1)𝑛(

𝑧

3
)𝑛 =

1

6
∑

(−1)𝑛

3𝑛 𝑧𝑛∞
𝑛=0

∞
𝑛=0  

 

            
1

(𝑧+1)(𝑧+3)
=

1

2
(

1

𝑧+1
) −

1

2
(

1

𝑧+3
)  

 

                             =
1

2
∑ (−1)𝑛𝑧𝑛∞

𝑛=0 −
1

6
∑

(−1)𝑛

3𝑛 𝑧𝑛∞
𝑛=0     

     

                          = ∑
1

2
(−1)𝑛(1 − (

1

3
)

1

3𝑛)𝑧𝑛∞
𝑛=0     

 

                         = ∑
1

2
(−1)𝑛(1 −

1

3𝑛+1)𝑧𝑛∞
𝑛=0 ;        for  |𝑧| < 1.        

                                

       This is the Taylor series as well as the Laurent series for 
1

(𝑧+1)(𝑧+3)
 since it’s 

analytic for |𝑧| < 1. 
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b. For 1 < |𝑧| < 3     we again use the partial fractions expression:  
 

                   
1

(𝑧+1)(𝑧+3)
=

1

2
(

1

𝑧+1
) −

1

2
(

1

𝑧+3
).   

     
We need to find a Laurent (or Taylor) series that converges for each term in 

1 < |𝑧| < 3.      

For |𝑧| > 1 we get the Laurent series for  
1

1+𝑧
   as follows: 

          
1

1+𝑧
=

1

𝑧(1+
1

𝑧
)

=
1

𝑧
(

1

1+
1

𝑧

) =
1

𝑧
∑

(−1)𝑛

𝑧𝑛
∞
𝑛=0 = ∑

(−1)𝑛

𝑧𝑛+1
∞
𝑗=0  ;     Thus  

    

                   
1

2
(

1

𝑧+1
) =

1

2
∑

(−1)𝑛

𝑧𝑛+1
∞
𝑛=0  . 

 

For |𝑧| < 3  we know the Taylor series for 
1

𝑧+3
 converges there, so from 

part “a” we have: 

                     
1

2
(

1

𝑧+3
) =

1

6
∑

(−1)𝑛

3𝑛 𝑧𝑛∞
𝑛=0   

 
 

Thus both of these expressions converge for 1 < |𝑧| < 3, now subtract 
them.  
 

1

(𝑧+1)(𝑧+3)
=

1

2
(

1

𝑧+1
) −

1

2
(

1

𝑧+3
)   

 

                   =
1

2
∑

(−1)𝑛

𝑧𝑛+1
∞
𝑛=0 −

1

6
∑

(−1)𝑛

3𝑛 𝑧𝑛∞
𝑛=0        

 

                   = ∑
(−1)𝑛

(2)𝑧𝑛+1
∞
𝑛=0 − ∑

(−1)𝑛

(2)3𝑛+1 𝑧𝑛∞
𝑛=0     

 

                   = ∑
(−1)𝑛

(2)𝑧𝑛+1
∞
𝑛=0 + ∑

(−1)𝑛+1

(2)3𝑛+1 𝑧𝑛.∞
𝑛=0  

         ∑
(−1)𝑛

2𝑧𝑛+1
∞
𝑛=0   is the principal part of the Laurent series. 
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c. For |𝑧| > 3  we again use the partial fraction expression: 

               
1

(𝑧+1)(𝑧+3)
=

1

2
(

1

𝑧+1
) −

1

2
(

1

𝑧+3
)      

            We need to find series that are valid for each term when |𝑧| > 3.  

 

            We know that  
1

2
(

1

𝑧+1
) = ∑

(−1)𝑛

(2)𝑧𝑛+1
∞
𝑛=0   is valid for |𝑧| > 1, so it’s    

             also valid for |𝑧| > 3.  

 

 We have to find a series that’s valid for 
1

2
(

1

𝑧+3
) for |𝑧| > 3. Notice: 

                    
1

𝑧+3
=

1

𝑧(1+
3

𝑧
)

=
1

𝑧
(

1

1+
3

𝑧

);   

 

                           =
1

𝑧
∑ (−1)𝑛(

3

𝑧
)𝑛𝑛=∞

𝑛=0   

 

                           = ∑
(−1)𝑛(3)𝑛

𝑧𝑛+1
∞
𝑛=0        converges for |𝑧| > 3.    

 

So           
1

2
(

1

𝑧+3
) = ∑

(−1)𝑛(3)𝑛

(2)𝑧𝑛+1
∞
𝑛=0  .  

 

 
   Subtracting the two expressions we get:  

 

1

(𝑧+1)(𝑧+3)
=

1

2
(

1

𝑧+1
) −

1

2
(

1

𝑧+3
)   

 
 

                  = ∑
(−1)𝑛

(2)𝑧𝑛+1
∞
𝑛=0 − ∑

(−1)𝑛(3)𝑛

(2)𝑧𝑛+1
∞
𝑛=0       

 
 

   = ∑
(−1)𝑛(1−3𝑛)

(2)𝑧𝑛+1
∞
𝑛=0 =

1

𝑧2 −
4

𝑧3 +
13

𝑧4 + ⋯ +
(−1)𝑛(1−3𝑛)

(2)𝑧𝑛+1 + ⋯      

 

which converges for |𝑧| > 3. 
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Ex.  Evaluate ∮
1

𝑧3(cos(𝑧))
𝑑𝑧

𝐶
; where 𝐶 is the circle |𝑧| = 1.  

 

 

Let’s find a Laurent series for 
1

𝑧3(cos(𝑧))
 .  

 

cos(𝑧) = 1 −
𝑧2

2!
+

𝑧4

4!
−

𝑧6

6!
+ ⋯ 

 

 
1

cos (𝑧)
=

1

1−
𝑧2

2!
+

𝑧4

4!
−

𝑧6

6!
+⋯

=
1

1−(
𝑧2

2!
−

𝑧4

4!
+

𝑧6

6!
−⋯ )

  

                            = 1 + (
𝑧2

2!
− 𝑧4

4!
+ 𝑧6

6!
− ⋯ ) + (

𝑧2

2!
− 𝑧4

4!
+ 𝑧6

6!
− ⋯ )

2
+ ⋯  

                            = 1 +
𝑧2

2
+higher power terms.   

     Note: It can be shown that if |𝑧| < 1, then |
𝑧2

2!
−

𝑧4

4!
+

𝑧6

6!
− ⋯ | < 1, so the 

     series on the RHS converges. 

 

     
1

𝑧3(cos(𝑧))
= (

1

𝑧3)(1 +
𝑧2

2
+higher powers)=

1

𝑧3 +
1

2𝑧
+higher powers  

 

Now integrating around the unit circle about the origin we get: 

∮
1

𝑧3(cos(𝑧))
𝑑𝑧

𝐶

= ∮ (
1

𝑧3
+

1

2𝑧
+ higher power terms) dz

𝐶

 

                                                 =
1

2
(2𝜋𝑖) = 𝜋𝑖  

 

       because  ∮ 𝑧𝑛𝑑𝑧 = 0        𝑖𝑓 𝑛 ≠ −1
𝐶

 

                                      = 2𝜋𝑖    𝑖𝑓 𝑛 = −1. 


