Taylor Series

A power series about the point zy € C is defined as:
f(2) =X%0ai(z—2); a;€C
We will focus on power series around zy = 0, i.e.
f(z) = Xi0a;2 .

The general case can be gotten by replacing Z by Z — Z,.

Theorem: If Z;O:O a;z’ converges for some z = w, |w| = 7, then it converges

forall zin |z| < r. Moreover, it converges uniformly in |z| < R, for any
R<r.

Proof: For |z| < r we have:
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|ajz7| = |a;r] f

But we are assuming that Z;’;O ajrj converges thus ]ll_)rg ajrj =0

because thejth term of a convergent series must go to 0 as j goes to 0o,

Thus for j large enough, i.e., there exists a J such thatif j = ] then |ajrj| <1
Soifj = J:
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Now take M = — < 1 (sinceR <71); and M; = M.



By the Weierstrass M test Z‘}o:O aij converges uniformly in |z] < R because:

v/
2 ]|aJ |<Z} ]M]_m

This theorem says that if a power series converges at a point Z = W then it
converges uniformly (and hence we can interchange an integral sign with a sum

sign) in any closed disk with radius smaller than |w]|.

Theorem (Taylor Series) Let f(2) be analyticin |z| < R then

f(j) (0)
IT

f(2) =255 a;z’ where a; =

and the power series converges uniformly in |z| < R; < R.

Outline of Proof: By Cauchy's integral formula we have:

f(z) = 95(; fw) dw

w—Zz

where C is a circle of radius R.

We can then write: L= : ~~ , thuswe have:
woz o w(1-3)
f(W) f(w) 1
f(z) = 2mi §C w— z ngﬁ w (1—_))dw

It's not hard to show that:

—_— . - sum OtT a geometric series
()~ =W g

and the sum on the right converges uniformly for |§| < 1.



So we have:
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Soif wewrite:  f(z) = X;%, aij, then we have:
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by Cauchy's integral formula for derivatives.

Notice that the formula for the coefficients of the Taylor Series is the same as the
case of one real variable. If we want the Taylor Series around z = z, we have:

P (o)

f(2) = XiL0a;(z — 20)’; where a; = R

We have now seen that if a complex function has one derivative in D € C, it
also has an infinite number of derivatives and the Taylor Series of the function
converges uniformly to the function inside any disk inside of D. This is in contrast
to functions of one real variable where you can have a function with n
derivatives, but not n 4+ 1 derivatives. In addition, with one real variable you can

have a function with an infinite number of derivatives at a point, but its Taylor
Series does not converge to the function in any neighborhood of that point (e.g.

1
f(x) = e GD  ifx 0
0 ifx =0.)



Ex. Find the Taylor Series around zy = 0, and the radius of convergence for

f(z) = e~

. )
f(z) = Z;-ozo a;z’ where @; = 0

i
f(z) =e? so fU(2) =e?; thus fU(0) = 1.
()
Clj =_f (O) :;.
J! J!

1 .
f(Z) = Z;ozoﬁzf is the Taylor Series for f(Z) = e?.

We have already seen that the radius of convergence of this power series is

R = oo.

Ex. Find the Taylor Series around zy = 0, and the radius of convergence for

a. f(z) =sin(z)

b. f(z) = i
a. f(z)=-sin(z) f(0)=0
f'(z) = cos(2) f(0)=1

f'(z) = —sin(  f"(0)=0
f'(z) = —cos(z)  f"(0) = —1
f®(2) = sin(z) F®0) =0

—1)/ z2j+1
Taylor Series: f(Z) = Z}?ozo ( (2)]-_'_1),

Radius of Convergence:

(_ 1)n+ 1ZZn+3

2
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n—oo (2n+3)! (—1)nz2n+1

rlll—{go |(2n+3)(2n+2) -

forallz€ C. > R =



b, f(2) =5 f(0) =1

1-z
/ _ 1 ' —
f1(@) = f'(0) =1
(@) = (1_:'2)3 £(0) = 2
f”,(Z) — (1_-2)4 f///(o) — 3|
fO@) = 5w fO©) =t

i17J .
Taylor Series: f(Z) = Z}X;Oi = Z(}o:O z/

J!
. ZTl+1
Radius of Convergence: lim |—| = |z| < 1.
n-ool 2
SoR=1.

Sometimes a Taylor Series can be found by substitution into known Taylor Series.
Ex. Find the Taylor Series for :
2
a. f(z) = eZ
b. f(z) =
f( ) = 1+222

c () =

J
a. Weknowe? = Z;o Ojl converges forallz € C. So

= ZOO ( ,) Z(}oonwill also converge for all z € C.

1 .
b. We knowE = 2;’;0 zJ converges for [z] < 1. So

L= o3 (—272)) =32 (=1)/2/z%
14222 1—(_222)_21=0( 2z%) _Z]=0( 1)/27/z

converges for all |—2z2%| < 1. This is the same as |z|? <% or |Z|<i

N



3 5 _1\n,2n+1
C. Sin(z)zz_%+%+“.+(1)z

(2n+1)!
. _ i i (_1)n22n+1
sin(z) -z = - g T T (2n+1)!
sin(2)-z _ z i (—1)z2n-1 vy (—1)/z2n-1
zz2 3l T 5! Tt (2n+1)! to =2 (2n+1)!

This power series converges for |z| < oo by the ratio test, however, we

_ sin(z)—z
can only say it equals Yz forz # 0.

Taylor Series behave in many ways like polynomials. We have already seen
that we can integrate them term by term, i.e.

co i oo i o aj i
[ f(@)dz = [¥7o(ajz))dz =37, [(a;z))dz = ZJ':O(]T]1)21+1 +C
where C is a constant.

We can also add series term by term.

Ex. Find the Taylor Series for f(z) = cosh(z).

J _z)J —1Vig
z —_ o Z° —7z _vwoo (2) oo (=1)z

power series converge for all z € C.



e’+e™* 1 (-1)/z/
cosh(z) = —— =7 [XjZo; +Z,o —
1 z2 73 7 Ak
—E[1+Z+§+§+z+ +F+
ZZ Z3 Z4 (_1)nzn
1—Z+§—§+E+ +T+'“ ]
272N
——(2+—+—+ +(2 )'+”')
42N W  z2M"
cosh(z)—1+ + + 4 =)0

(2n )' 2n)!

This power series converges for all z € C because each of the power series we
added to get it do (If you add two power series that converge on different sets,
the sum will converge on the intersection of those sets.).

We can also differentiate Taylor Series term by term to get the derivative of a
function.

Theorem: Let f(z) be analytic for |z| < R. Then the series obtained by

differentiating the Taylor series termwise converges uniformly to f'(Z) in
|lz| < R; <R.

Proof. We know that if f (2) is analyticin a disk D, |z| < R, thensois f'(2).
Since f'(2) is analytic, it has a convergent Taylor series:
(MP© _ 190

j! j! '

f'(z) = Z?:o Cij; where Cj =



The Taylor series for f (2) is:

0))
HOEDAS

If we differentiate the power series for f(z) term by term we get:
g0 PO -1 _ —ye o
j=1 G- ? J=0ji
Which is the Taylor series for f'(z).

Notice that the Taylor series of a function f (Z) must be unique. Suppose
. 0 i 00 i
there were 2 Taylor series for f(2), 220 a;z’ and X.;Zo bjz’.

let g(z) = Z?:o aij - Z?:o ijj =f(z) —f(2) =0.

The Taylor series for g(z) = 0 is the series .72 Cij where ¢; = 0 forall j.

0o | __ 00 B
But  XirgCjZ z) = = Y0 4jZ z) — izobjz) = Xilo(aj — bj)z/;
so: 0 =c¢; =a; — bjforallj,andthus a; = b; forall j.

Thus Y520 a;z’) and Yizo b;z) are the same power series.
Ex. Find the Taylor series for g(z) = cos(z) from the Taylor series for
f(2) = sin(z).

Since g(z) = f'(z), we can just differentiate the Taylor series for
f(z) = sin (2) term by term to get the Taylor series for g(z) = cos(z).



w (—1DJzHH
J=0 (2j+1)

f@2) =sin(z) =

thus
o (-1)/z2%
9(2) = cos(z) = T, 22—

Since the radius of convergence of the power series for sin(z) is R = oo then
so is the radius of convergence of the derivative of the power series of sin(z).

Thus the radius of convergence of the power series for cos(z) is also R = oo.

Ex. Find the Taylor series for

3
a. T—; 1z| < 32
o2\ L2
b. W; 0<|z| <.
Z
z?2 z?2 1
d. 2—73 - ? [(1_£>]
2
1 . ; ) z3
We know that = Yj=oW’ converges for [w| < 1. Soifw = —:
1-w 2
z2 1 _ 22 0 73 j — 72 oo Z3j
7[@] = 2j=0(3) =5 2izo g
2
o 232
- Z_]=0 2j+1
3
which converges for |Z7| <1lor|z| <32.
22 oo 232 5
Thus ——3 = j=0 T and converges for |z| < V/2.



. (_1)]'22j+1.

b. We know that sin(z) = Zj:OW' |z| < o0 so
sin(2?) = Lo g edr = S ey el <0
sin(z?) = z? —ZB—T+ZSL:)+ ---+(_é)jj+g!+2+ s+ So
sin(z?) — z% = —ZB—T+§+ °--+(_(;)jj+g!+2+ e |z| < oo
sin(e)-z2 22 20 20 COat
z 3! 5! 7! (2j+1)!
:ZZ[—%+ZS—T—Z7—T+ +(_é)]]+i;'_4+ ], 0<z] < o0
So M approaches O like z% as z goes to 0.

Z4
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sm(z ) z2

Ex. Evaluate§ ( )dz ; where C is the unit circle |z| = 1.

From the previous example we know that:

sin(z?)-z2 _ oo (—1)jz4j_2_

7% J=1 (2j+1)

Sin(ZZ)_ZZ _ izoo (—1)/z*~2 _ Zoo (_1)jz4j—5

z7 J=1 (2j+1)! J=1 (2j+1)!
_ 11,72 7 CJzY7s
T 31z T 51 7 T (2j+1)!
We saw earlier that for C, the unit circle:
$. z/dz=0 if j -1
=2mi if j = —1; So
sm(z) z2 . w (=1)jz*-5 _ (~1)Jz45 1) z4i=5
EI)‘C dz = Sﬁ Z] 1 @j+D! z:J 1¢C (2j+1)! dz
O
B 93C Cazts 7t Zj+1)! +-)dz
_g§ _ 11 2 _ 7 C1/z7s
=4 3!Zdz+§ﬁc (5| + ot 2D + - )dz
= ——(2m) +0=-2

3
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1 .
From the Taylor series for 1 Z}'o:o 7} we know
1 0 PR
— =) 2,(-17; |z| < 1.
— =Y7,(-V7; Iz

1
This series only converges, and converges to Tog’ when |z| < 1.

1 1
For example, even though we can substitute Z = 2 into —— and get — =
1+z 1+2

Vi

Wk

substituting Z = 2 into the power series gives us :
Y20(-1)/(2) =1-2+4—8+16+ -

1
which doesn’t converge. However, we can find a series expression for : that
z

1
will converge for Z = 2 (and converge to 5).

This is how we do it. Notice that:

1 1 1 1

14z z(1+3) z\1+:
VA VA

1 1
Let’s look at the term 1 We know if |Z| <1, ie.|z| > 1then

1 0o 2 0 (-1)]
zZ
_ 1 1 1( 1

Now we can create a series for = —=—-|—

1+z z(1+>) z\1+=

zZ VA4

1 1 1 1 1o (1) o (=1)J
= =-|\—3)=clj=0o—7 = Lj=0 71 121>1
1+z z(1+§) z 1+§ ZZ]_O zJ z:1—0 zJj+1 ||
1 1 1 1 (-1)J
—_ — —— + — — — + ee e —I— + )




Now notice when we plug Z = 2 into this series we get:

1 1
— 2 -2 =
— i, — 3 —
) 2
. . w (-1 _ oo jo—(+1) -
However, notice the series Zf:OF = 2j=0(—1) Z is NOT a power

series in Z because the exponents of Z are not all non-negative (in fact, they are
all negative). This is called a Laurent series.

Theorem (comparison test): Let the series 2;-0:0 aij converge for |z| < R. If
|bj| < |aj| for j = | for some J, then the series Z?:o ijj converges for
|z| < R.

Proof: Suppose 2?:0 aij converges for Z = ¢, where |c| < R.

Since Z?:o ajc’ converges, lim a;jc/ = 0.

n—oo

Thus there exists a J such that if j = J then |ajcj| <1
Forany Z such that |z]| < |c|and j = J:

J z

Cc

b1 | < |ajz| = |aye| g

Z
c

Now we use the Weierstrass M test to show that Z‘;-OZO ijj converges.
Zj i Z
Let M; = |—| then |ij]| < |-
c c

2= My =X,

J
= M;j, and
J

zZ
Cc
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Since converges (It's a geometric series with the absolute

|<1 Z]]

value of the ratio less than one.).

Now since ¥, 72 ; M;converges so does Y, 72 b;z.

Ex. Show Zn 0 converges for all z € C.

(n ')3

n

zn|

1
< — thus

Z
(n)? = n! (n)?

z
We know that Zflo:() T converges to e forall z € C.

n!

So by the comparison test Zn 0 o converges for all z € C.

|)3

Theorem: Let f(z) and g(z) be analytic functions in a common domain D. If
f(z) = g(2) in some subdomain D’ € D or on a curve C interior to D, then

f(z) = g(z) everywherein D.

Corollary: If f(2) is analytic in a domain D and f(z) = 0 on some subdomain
D' € D oronacurve C interior to D, then f(z) = 0 on D.



Theorem: Let f(Z) be analytic and not identically zero in a domain D with
f(zy) =0, zy € D. Then z; is an isolated zero; that is, there is a
neighborhood about Z = zy where f(Z) is non-zero except at Z = z;.

Proof: Since f(2) is analytic in D it has a Taylor series about Z = Zz:

£ = 5508 (2 — 7).

If f(Z) has a zero of order m at Z = z; then:

F) = S5 (- 20,

15

m must be finite otherwise f(Z) = (0 forall z € D (and it’s not by assumption).

Thus we can write:

f(2) = (z—-2))"g(2)

where g(z) has a Taylor series around Z = z, and g(zy) # 0.

Since g(z) is analytic (it has a Taylor series that converges to it) in D, it must also

be continuous in D.
Hence we can find a neighborhood around z = z; such that g(z) # 0.
But in that neighborhood f(z) # 0 since f(z) = (z — zy)" g (2).

Hence z = Z; is an isolated zero of f(z).



