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                                                Taylor Series 

 

  A power series about the point 𝑧0 ∈ ℂ is defined as: 

                                      𝑓(𝑧) = ∑ 𝑎𝑗(𝑧 − 𝑧0)𝑗∞
𝑗=0  ;      𝑎𝑗 ∈ ℂ. 

We will focus on power series around 𝑧0 = 0,  i.e. 

                                     𝑓(𝑧) = ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0 . 

The general case can be gotten by replacing 𝑧 by 𝑧 − 𝑧0. 

 

Theorem:  If ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0  converges for some 𝑧 = 𝑤, |𝑤| = 𝑟, then it converges 

for all 𝑧 in |𝑧| < 𝑟.  Moreover, it converges uniformly in |𝑧| ≤ 𝑅, for any        

𝑅 < 𝑟.  

 

Proof:  For  |𝑧| < 𝑟 we have: 

                                          |𝑎𝑗𝑧𝑗| = |𝑎𝑗𝑟𝑗| |
𝑧

𝑟
|
𝑗
.   

But we are assuming that ∑ 𝑎𝑗𝑟𝑗∞
𝑗=0  converges thus lim

𝑗→∞
𝑎𝑗𝑟𝑗 = 0 

because the 𝑗𝑡ℎ  term of a convergent series must go to 0 as 𝑗 goes to ∞.  

Thus for 𝑗 large enough, i.e., there exists a 𝐽 such that if 𝑗 ≥ 𝐽 then |𝑎𝑗𝑟𝑗| < 1. 

So if 𝑗 ≥ 𝐽: 

                     |𝑎𝑗𝑧𝑗| = |𝑎𝑗𝑟𝑗| |
𝑧

𝑟
|
𝑗

< |
𝑧

𝑟
|
𝑗

≤ (
𝑅

𝑟
)𝑗 .   

Now take 𝑀 =
𝑅

𝑟
< 1   (since 𝑅 < 𝑟);    and 𝑀𝑗 = 𝑀𝑗 .  
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By the Weierstrass 𝑀 test ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0  converges uniformly in |𝑧| ≤ 𝑅 because: 

                          ∑ |𝑎𝑗𝑧𝑗| < ∑ 𝑀𝑗 =
𝑀𝐽

1−𝑀

∞
𝑗=𝐽

∞
𝑗=𝐽  . 

 

     This theorem says that if a power series converges at a point 𝑧 = 𝑤 then it 

converges uniformly (and hence we can interchange an integral sign with a sum 

sign) in any closed disk with radius smaller than |𝑤|. 

 

Theorem (Taylor Series)  Let 𝑓(𝑧) be analytic in |𝑧| ≤ 𝑅 then 

                                𝑓(𝑧) = ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0              where   𝑎𝑗 = 

𝑓(𝑗)(0)

𝑗!
 

and the power series converges uniformly in |𝑧| ≤ 𝑅1 < 𝑅. 

 

Outline of Proof:  By Cauchy's integral formula we have: 

                                           𝑓(𝑧) = 
1

2𝜋𝑖
∮

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤

𝐶
 

where 𝐶 is a circle of radius 𝑅. 

We  can then write:     
1

𝑤−𝑧
=

1

𝑤(1−
𝑧

𝑤
)
 ,   thus we have: 

             𝑓(𝑧) =
1

2𝜋𝑖
∮

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤

𝐶
=

1

2𝜋𝑖
∮

𝑓(𝑤)

𝑤
(

1

(1−
𝑧

𝑤
)
)𝑑𝑤

𝐶
. 

It's not hard to show that: 

                                      
1

(1−
𝑧

𝑤
)

= ∑ (
𝑧

𝑤
)

𝑗
∞
𝑗=0          (sum of a geometric series) 

and the sum on the right converges uniformly for |
𝑧

𝑤
| < 1.  
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   So we have: 

   𝑓(𝑧) =
1

2𝜋𝑖
∮

𝑓(𝑤)

𝑤
(

1

(1−
𝑧

𝑤
)
)𝑑𝑤

𝐶
=

1

2𝜋𝑖
∮

𝑓(𝑤)

𝑤
(

𝐶
∑ (

𝑧

𝑤
)

𝑗
∞
𝑗=0 )𝑑𝑤 

            =
1

2𝜋𝑖
∮ 𝑓(𝑤)(

𝐶
∑

𝑧𝑗

𝑤𝑗+1)∞
𝑗=0 𝑑𝑤 

            = ∑ (
1

2𝜋𝑖
∮

𝑓(𝑤)

𝑤𝑗+1 𝑑𝑤)𝑧𝑗
𝐶

.∞
𝑗=0  

 

So if we write:    𝑓(𝑧) = ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0 ,  then we have: 

                           𝑎𝑗 =
1

2𝜋𝑖
∮

𝑓(𝑤)

𝑤𝑗+1 𝑑𝑤 =
𝑓(𝑗)(0)

𝑗!𝐶
 

by Cauchy's integral formula for derivatives. 

 

Notice that the formula for the coefficients of the Taylor Series is the same as the 

case of one real variable. If we want the Taylor Series around 𝑧 = 𝑧0 we have: 

                             𝑓(𝑧) = ∑ 𝑎𝑗(𝑧 − 𝑧0)𝑗∞
𝑗=0 ;    where   𝑎𝑗 =

𝑓(𝑗)(𝑧0)

𝑗!
 . 

 

     We have now seen that if a complex function has one derivative in 𝐷 ⊆ ℂ, it 

also has an infinite number of derivatives and the Taylor Series of the function 

converges uniformly to the function inside any disk inside of 𝐷.  This is in contrast 

to functions of one real variable where you can have a function with 𝑛 

derivatives, but not 𝑛 + 1 derivatives.  In addition, with one real variable you can 

have a function with an infinite number of derivatives at a point,  but its Taylor 

Series does not converge to the function in any neighborhood of that point (e.g. 

𝑓(𝑥) = 𝑒
−(

1

𝑥2)
      if 𝑥 ≠ 0 

          = 0               if 𝑥 = 0.) 
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Ex.  Find the Taylor Series around 𝑧0 = 0, and the radius of convergence for 

       𝑓(𝑧) = 𝑒𝑧. 

                      𝑓(𝑧) = ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0          where   𝑎𝑗 =

𝑓(𝑗)(0)

𝑗!
 

     𝑓(𝑧) = 𝑒𝑧  so   𝑓(𝑗)(𝑧) = 𝑒𝑧;   thus  𝑓(𝑗)(0) = 1.   

 

      ⟹   𝑎𝑗 =
𝑓(𝑗)(0)

𝑗!
=

1

𝑗!
 .    

 

             𝑓(𝑧) = ∑
1

𝑗!
𝑧𝑗∞

𝑗=0   is the Taylor Series for  𝑓(𝑧) = 𝑒𝑧.   

 

We have already seen that the radius of convergence of this power series is      

𝑅 = ∞. 

 

Ex.  Find the Taylor Series around 𝑧0 = 0, and the radius of convergence for 

        a.   𝑓(𝑧) = sin(𝑧)     

        b.    𝑓(𝑧) =
1

1−𝑧
 .       

                                  

a.     𝑓(𝑧) = sin(𝑧)                    𝑓(0) = 0 

   𝑓′(𝑧) = cos(𝑧)                  𝑓′(0) = 1 

  𝑓′′(𝑧) = − sin(𝑧)             𝑓′′(0) = 0 

 𝑓′′′(𝑧) = − cos(𝑧)           𝑓′′′(0) = −1 

𝑓(4)(𝑧) = sin(𝑧)              𝑓(4)(0) = 0   

 

  Taylor Series:         𝑓(𝑧) = ∑
(−1)𝑗𝑧2𝑗+1

(2𝑗+1)!
∞
𝑗=0  

 

                Radius of Convergence: 

                lim
𝑛→∞

|
(−1)𝑛+1𝑧2𝑛+3

(2𝑛+3)!

(2𝑛+1)!

(−1)𝑛𝑧2𝑛+1| = lim
𝑛→∞

|
𝑧2

(2𝑛+3)(2𝑛+2)
| = 0   

                                     for all 𝑧 ∈ ℂ.   ⟹  𝑅 = ∞ 
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b.     𝑓(𝑧) =
1

1−𝑧
                            𝑓(0) = 1 

   𝑓′(𝑧) =
1

(1−𝑧)2                      𝑓′(0) = 1 

  𝑓′′(𝑧) =
2

(1−𝑧)3                     𝑓′′(0) = 2 

 𝑓′′′(𝑧) =
3!

(1−𝑧)4                   𝑓′′′(0) = 3! 

𝑓(𝑗)(𝑧) =
𝑗!

(1−𝑧)𝑗+1                𝑓(𝑗)(0) = 𝑗! 

 

        Taylor Series:        𝑓(𝑧) = ∑
𝑗!𝑧𝑗

𝑗!

∞
𝑗=0 = ∑ 𝑧𝑗∞

𝑗=0   

 

Radius of Convergence:  lim
𝑛→∞

|
𝑧𝑛+1

𝑧𝑛 | = |𝑧| < 1.    

                                             So  𝑅 = 1 . 
 

Sometimes a Taylor Series can be found by substitution into known Taylor Series.  

 

Ex.  Find the Taylor Series for : 

a. 𝑓(𝑧) = 𝑒𝑧2
 

b. 𝑓(𝑧) =
1

1+2𝑧2  

c. 𝑓(𝑧) =
sin(𝑧)−𝑧

𝑧2       

 

a.  We know 𝑒𝑧 = ∑
𝑧𝑗

𝑗!
∞
𝑗=0  converges for all 𝑧 ∈ ℂ.   So   

 𝑒𝑧2
= ∑

(𝑧2)𝑗

𝑗!
∞
𝑗=0 = ∑

𝑧2𝑗

𝑗!
∞
𝑗=0  will also converge for all 𝑧 ∈ ℂ.    

 

 

b. We know 
1

1−𝑧
= ∑ 𝑧𝑗∞

𝑗=0   converges for |𝑧| < 1.   So 

       
1

1+2𝑧2 =
1

1−(−2𝑧2)
 = ∑ (−2𝑧2)𝑗 = ∑ (−1)𝑗2𝑗𝑧2𝑗∞

𝑗=0
∞
𝑗=0    

              converges for all |−2𝑧2| < 1.  This is the same as |𝑧|2 <
1

2
  or  |𝑧|<

1

√2
 . 
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c.       sin(𝑧) = 𝑧 − 
𝑧3

3!
+

𝑧5

5!
+ ⋯ +

(−1)𝑛𝑧2𝑛+1

(2𝑛+1)!
+ ⋯   

 

      sin(𝑧) − 𝑧 = − 
𝑧3

3!
+

𝑧5

5!
+ ⋯ +

(−1)𝑛𝑧2𝑛+1

(2𝑛+1)!
+ ⋯ 

  

          
sin(𝑧)−𝑧

𝑧2 = −
𝑧

3!
+

𝑧3

5!
+ ⋯ +

(−1)𝑛𝑧2𝑛−1

(2𝑛+1)!
+ ⋯ = ∑

(−1)𝑗𝑧2𝑛−1

(2𝑛+1)!
∞
𝑛=1    

 

This power series converges for |𝑧| < ∞ by the ratio test, however, we 

can only say it equals 
sin(𝑧)−𝑧

𝑧2  for 𝑧 ≠ 0. 

 

 

 

     Taylor Series behave in many ways like polynomials.  We have already seen 

that we can integrate them term by term, i.e.  
 

∫ 𝑓(𝑧)𝑑𝑧 = ∫ ∑ (𝑎𝑗𝑧𝑗∞
𝑗=0 )𝑑𝑧 = ∑ ∫(𝑎𝑗𝑧𝑗)𝑑𝑧 = ∑

𝑎𝑗

(𝑗+1)
𝑧𝑗+1∞

𝑗=0
∞
𝑗=0  +𝐶   

where 𝐶 is a constant.  
 

     We can also add series term by term. 

 

 

Ex.  Find the Taylor Series for 𝑓(𝑧) = cosh(𝑧). 
 

 

𝑒𝑧 = ∑
𝑧𝑗

𝑗!
∞
𝑗=0       and    𝑒−𝑧 = ∑

(−𝑧)𝑗

𝑗!
= ∑

(−1)𝑗𝑧𝑗

𝑗!
∞
𝑗=0

∞
𝑗=0   where both 

power series converge for all 𝑧 ∈ ℂ.  
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cosh(𝑧) =
𝑒𝑧+𝑒−𝑧

2
=

1

2
[∑

𝑧𝑗

𝑗!

∞
𝑗=0 +  ∑

(−1)𝑗𝑧𝑗

𝑗!

∞
𝑗=0 ]    

 

       =
1

2
[(1 + 𝑧 +

𝑧2

2!
+

𝑧3

3!
+

𝑧4

4!
+ ⋯ +

𝑧𝑛

𝑛!
+ ⋯ )

+ (1 − 𝑧 +
𝑧2

2!
−

𝑧3

3!
+

𝑧4

4!
+ ⋯ +

(−1)𝑛𝑧𝑛

𝑛!
+ ⋯ )] 

                 

                 =
1

2
(2 +

2𝑧2

2!
+

2𝑧4

4!
+ ⋯ +

2𝑧2𝑛

(2𝑛)!
+ ⋯ )  

 

 

 cosh(𝑧) = 1 +
𝑧2

2!
+

𝑧4

4!
+ ⋯ +

𝑧2𝑛

(2𝑛)!
+ ⋯ = ∑

𝑧2𝑛

(2𝑛)!
∞
𝑛=0  . 

     

This power series converges for all 𝑧 ∈ ℂ because each of the power series we 

added to get it do (If you add two power series that converge on different sets, 

the sum will converge on the intersection of those sets.). 

 

 

     We can also differentiate Taylor Series term by term to get the derivative of a 

function. 

 

Theorem:  Let 𝑓(𝑧) be analytic for |𝑧| ≤ 𝑅.  Then the series obtained by 

differentiating the Taylor series termwise converges uniformly to 𝑓′(𝑧) in 

 |𝑧| ≤ 𝑅1 < 𝑅. 

 

Proof.  We know that if 𝑓(𝑧) is analytic in a disk 𝐷, |𝑧| ≤ 𝑅, then so is 𝑓′(𝑧).  

Since 𝑓′(𝑧) is analytic, it has a convergent Taylor series: 

      𝑓′(𝑧) = ∑ 𝑐𝑗𝑧𝑗∞
𝑗=0 ;     where   𝑐𝑗 =

(𝑓′)
(𝑗)

(0)

𝑗!
=

𝑓(𝑗+1)(0)

𝑗!
 .   
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The Taylor series for 𝑓(𝑧) is: 

                                       𝑓(𝑧) = ∑
𝑓

(𝑗)
(0)

𝑗!
𝑧𝑗∞

𝑗=0 .     

 

 

If we differentiate the power series for 𝑓(𝑧) term by term we get: 

                      ∑
𝑓(𝑗)(0)

(𝑗−1)!
𝑧𝑗−1 = ∑

𝑓(𝑗+1)(0)

𝑗!
𝑧𝑗∞

𝑗=0
∞
𝑗=1 .  

Which is the Taylor series for 𝑓′(𝑧). 
 

 

     Notice that the Taylor series of a function 𝑓(𝑧) must be unique.  Suppose 

there were 2 Taylor series for 𝑓(𝑧),  ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0   and  ∑ 𝑏𝑗𝑧𝑗∞

𝑗=0 .   

 

Let 𝑔(𝑧) = ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0 − ∑ 𝑏𝑗𝑧𝑗∞

𝑗=0 = 𝑓(𝑧) − 𝑓(𝑧) = 0.  

 

The Taylor series for  𝑔(𝑧) = 0 is the series ∑ 𝑐𝑗𝑧𝑗∞
𝑗=0   where 𝑐𝑗 = 0 for all 𝑗.    

 

 

 But      ∑ 𝑐𝑗𝑧𝑗∞
𝑗=0 = ∑ 𝑎𝑗𝑧𝑗∞

𝑗=0 − ∑ 𝑏𝑗𝑧𝑗∞
𝑗=0 = ∑ (𝑎𝑗 − 𝑏𝑗)𝑧𝑗∞

𝑗=0 ;   

 

 so:      0 = 𝑐𝑗 = 𝑎𝑗 − 𝑏𝑗  for all 𝑗, and thus   𝑎𝑗 = 𝑏𝑗  for all 𝑗.  

 

Thus ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0   and  ∑ 𝑏𝑗𝑧𝑗∞

𝑗=0   are the same power series. 

 

 

Ex.  Find the Taylor series for 𝑔(𝑧) = cos(𝑧)  from the Taylor series for 

        𝑓(𝑧) = sin(𝑧). 

 

Since 𝑔(𝑧) = 𝑓′(𝑧), we can just differentiate the Taylor series for               

𝑓(𝑧) = sin (𝑧) term by term to get the Taylor series for 𝑔(𝑧) = cos(𝑧). 
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  𝑓(𝑧) = sin(𝑧) = ∑
(−1)𝑗𝑧2𝑗+1

(2𝑗+1)!

∞
𝑗=0 ;    thus 

                   𝑔(𝑧) = cos(𝑧) = ∑
(−1)𝑗𝑧2𝑗

(2𝑗)!

∞
𝑗=0  . 

     Since the radius of convergence of the power series for sin(𝑧) is 𝑅 = ∞ then 

so is the radius of convergence of the derivative of the power series of sin(𝑧). 

Thus the radius of convergence of the power series for cos(𝑧) is also 𝑅 = ∞. 

 

Ex.  Find the Taylor series for 

a.   
𝑧2

2−𝑧3 ;    |𝑧| < √2
3

   

 

b.   
sin(𝑧2)−𝑧2

𝑧4  ;    0 < |𝑧| < ∞ .   

 

 

a.           
𝑧2

2−𝑧3 =
𝑧2

2
[

1

(1−
𝑧3

2
)
]. 

We know that 
1

1−𝑤
 = ∑ 𝑤𝑗∞

𝑗=0   converges for |𝑤| < 1.   So if 𝑤 =
𝑧3

2
 : 

 

    
𝑧2

2
[

1

(1−
𝑧3

2
)
] =

𝑧2

2
∑ (

𝑧3

2
)𝑗 =

𝑧2

2
∑

𝑧3𝑗

2𝑗
∞
𝑗=0  ∞

𝑗=0    

                       = ∑
𝑧3𝑗+2

2𝑗+1
∞
𝑗=0  

 which converges for |
𝑧3

2
| < 1 or |𝑧| < √2

3
 .   

 

 

Thus   
𝑧2

2−𝑧3 = ∑
𝑧3𝑗+2

2𝑗+1
∞
𝑗=0 ;   and converges for |𝑧| < √2

3
.  
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b. We know that sin(𝑧) = ∑
(−1)𝑗𝑧2𝑗+1

(2𝑗+1)!
∞
𝑗=0 ;    |𝑧| < ∞  so      

 

     sin(𝑧2)  = ∑
(−1)𝑗(𝑧2)2𝑗+1

(2𝑗+1)!
= ∑

(−1)𝑗𝑧4𝑗+2

(2𝑗+1)!

∞
𝑗=0

∞
𝑗=0 ;      |𝑧| < ∞ 

 

       sin(𝑧2) = 𝑧2 −
𝑧6

3!
+

𝑧10

5!
+ ⋯ +

(−1)𝑗𝑧4𝑗+2

(2𝑗+1)!
+ ⋯    So  

 

    sin(𝑧2) − 𝑧2  = −
𝑧6

3!
+

𝑧10

5!
+ ⋯ +

(−1)𝑗𝑧4𝑗+2

(2𝑗+1)!
+ ⋯  ;     |𝑧| < ∞.         

 

            
sin(𝑧2)−𝑧2

𝑧4   = −
𝑧2

3!
+

𝑧6

5!
−

𝑧10

7!
+ ⋯ +

(−1)𝑗𝑧4𝑗−2

(2𝑗+1)!
+ ⋯      

 

   = 𝑧2[−
1

3!
+

𝑧4

5!
−

𝑧8

7!
+ ⋯ +

(−1)𝑗𝑧4𝑗−4

(2𝑗+1)!
+ ⋯ ];  0 < |𝑧| < ∞  . 

 
     

       

So  
sin(𝑧2)−𝑧2

𝑧4  approaches 0 like 𝑧2 as 𝑧 goes to 0. 

 

 

 

 

 

 

 

 

 

 



11 
 

Ex.  Evaluate ∮ (
sin(𝑧2)−𝑧2

𝑧7𝐶
)𝑑𝑧 ;  where 𝐶 is the unit circle |𝑧| = 1. 

 

 

From the previous example we know that: 

 

sin(𝑧2)−𝑧2

𝑧4 = ∑
(−1)𝑗𝑧4𝑗−2

(2𝑗+1)!

∞
𝑗=1 ;      So   

 

 

sin(𝑧2)−𝑧2

𝑧7 =
1

𝑧3
∑

(−1)𝑗𝑧4𝑗−2

(2𝑗+1)!
= ∑

(−1)𝑗𝑧4𝑗−5

(2𝑗+1)!

∞
𝑗=1

∞
𝑗=1     

 

                  = −
1

3!

1

𝑧
+

𝑧3

5!
−

𝑧7

7!
+ ⋯ +

(−1)𝑗𝑧4𝑗−5

(2𝑗+1)!
+ ⋯ 

 

 

We saw earlier that for 𝐶, the unit circle: 

             ∮ 𝑧𝑗𝑑𝑧 = 0          𝑖𝑓 𝑗 ≠ −1
𝐶

 

                              = 2𝜋𝑖     𝑖𝑓 𝑗 = −1;               So 

 

 

∮
sin(𝑧2)−𝑧2

𝑧7 𝑑𝑧 = ∮ ∑
(−1)𝑗𝑧4𝑗−5

(2𝑗+1)!

∞
𝑗=1 𝑑𝑧 = ∑ ∮

(−1)𝑗𝑧4𝑗−5

(2𝑗+1)!
𝑑𝑧

𝐶
∞
𝑗=1𝐶𝐶

   
 

 

                  = ∮ (−
1

3!

1

𝑧
+

𝑧3

5!
−

𝑧7

7!
+ ⋯ +

(−1)𝑗𝑧4𝑗−5

(2𝑗+1)!
+ ⋯ )𝑑𝑧

𝐶
   

 

 

                  = ∮ −
1

3!

1

𝑧
𝑑𝑧 + ∮ (

𝑧3

5!
−

𝑧7

7!
+ ⋯ +

(−1)𝑗𝑧4𝑗−5

(2𝑗+1)!
+ ⋯ )𝑑𝑧

𝐶𝑐
   

 

 

                  = −
1

6
(2𝜋𝑖) + 0 = −

𝜋𝑖

3
 . 
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 From the Taylor series for 
1

1−𝑧
= ∑ 𝑧𝑗∞

𝑗=0  we know    

                         
1

1+𝑧
= ∑ (−1)𝑗𝑧𝑗∞

𝑗=0 ;    |𝑧| < 1.  

 

This series only converges, and converges to  
1

1+𝑧
 ,  when |𝑧| < 1.                    

For example, even though we can substitute 𝑧 = 2 into 
1

 1+𝑧
 and get  

1

1+2
=

1

3
 , 

substituting 𝑧 = 2 into the power series gives us : 

                    ∑ (−1)𝑗(2)𝑗 = 1 − 2 + 4 − 8 + 16 + ⋯∞
𝑗=0  

which doesn’t converge.  However, we can find a series expression for 
1

1+𝑧
  that 

will converge for 𝑧 = 2 (and converge to 
1

3
).   

 

 
This is how we do it. Notice that: 
 

                                           
1

1+𝑧
=

1

𝑧(1+
1

𝑧
)

=
1

𝑧
(

1

1+
1

𝑧

).      

     

Let’s look at the term 
1

1+
1

𝑧

 .  We know if |
1

𝑧
| < 1,  i.e. |𝑧| > 1 then 

                      
1

1+
1

𝑧

= ∑ (−1)𝑗(
1

𝑧
)𝑗 = ∑

(−1)𝑗

𝑧𝑗
∞
𝑗=0

∞
𝑗=0  .  

 

Now we can create a series for 
1

1+𝑧
=

1

𝑧(1+
1

𝑧
)

=
1

𝑧
(

1

1+
1

𝑧

):  

 

     
1

1+𝑧
=

1

𝑧(1+
1

𝑧
)

=
1

𝑧
(

1

1+
1

𝑧

) =
1

𝑧
∑

(−1)𝑗

𝑧𝑗
∞
𝑗=0 = ∑

(−1)𝑗

𝑧𝑗+1
∞
𝑗=0  ;      |𝑧| > 1   

              =
1

𝑧
−

1

𝑧2 +
1

𝑧3 −
1

𝑧4 + ⋯ +
(−1)𝑗

𝑧𝑗+1 + ⋯  . 
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Now notice when we plug 𝑧 = 2 into this series we get: 
1

1 + 2
=

1

2
−

1

4
+

1

8
−

1

16
+ ⋯  . 

 

This is a geometric series with a ratio between term of −
1

2
 , thus the sum is: 

                                      𝑆 =
1

2

1−(−
1

2
)

=
1

2
3

2

=
1

3
 . 

 

However, notice the series ∑
(−1)𝑗

𝑧𝑗+1
∞
𝑗=0 = ∑ (−1)𝑗𝑧−(𝑗+1)∞

𝑗=0   is NOT a power 

series in 𝑧 because the exponents of 𝑧 are not all non-negative (in fact, they are 

all negative).  This is called a Laurent series. 

 

 

Theorem (comparison test):  Let the series ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0  converge for |𝑧| < 𝑅.  If 

|𝑏𝑗| ≤ |𝑎𝑗| for 𝑗 ≥ 𝐽 for some 𝐽, then the series ∑ 𝑏𝑗𝑧𝑗∞
𝑗=0  converges for  

|𝑧| < 𝑅.  

 

Proof:  Suppose ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0  converges for 𝑧 = 𝑐, where |𝑐| < 𝑅.   

Since ∑ 𝑎𝑗𝑐𝑗∞
𝑗=0  converges, lim

𝑛→∞
𝑎𝑗𝑐𝑗 = 0.     

   

Thus there exists a 𝐽 such that if 𝑗 ≥ 𝐽 then |𝑎𝑗𝑐𝑗| < 1.   

For any 𝑧 such that |𝑧| < |𝑐| and  𝑗 ≥ 𝐽: 

                |𝑏𝑗𝑧𝑗| ≤ |𝑎𝑗𝑧𝑗| = |𝑎𝑗𝑐𝑗| |
𝑧

𝑐
|
𝑗

< |
𝑧

𝑐
|
𝑗
.    

 

 

Now we use the Weierstrass 𝑀 test to show that ∑ 𝑏𝑗𝑧𝑗∞
𝑗=0  converges. 

Let 𝑀𝑗 = |
𝑧

𝑐
|
𝑗
 then  |𝑏𝑗𝑧𝑗| < |

𝑧

𝑐
|
𝑗

= 𝑀𝑗 ,  and 

                                    ∑ 𝑀𝑗 = ∑ |
𝑧

𝑐
|
𝑗

∞
𝑗=𝐽

∞
𝑗=𝐽 . 
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Since |
𝑧

𝑐
| < 1,   ∑ |

𝑧

𝑐
|

𝑗
∞
𝑗=𝐽  converges (It’s a geometric series with the absolute 

value of the ratio less than one.). 

Now since ∑ 𝑀𝑗
∞
𝑗=𝐽 converges so does ∑ 𝑏𝑗𝑧𝑗∞

𝑗=0 .    

 

 

 

Ex.  Show ∑
𝑧𝑛

(𝑛!)3
∞
𝑛=0  converges for all 𝑧 ∈ ℂ.  

 

 

                          
1

(𝑛!)3 ≤
1

𝑛!
  thus   |

𝑧𝑛

(𝑛!)3| ≤ |
𝑧𝑛

𝑛!
|.   

We know that ∑
𝑧𝑛

𝑛!
∞
𝑛=0   converges to 𝑒𝑧 for all 𝑧 ∈ ℂ.   

So by the comparison test ∑
𝑧𝑛

(𝑛!)3
∞
𝑛=0  converges for all 𝑧 ∈ ℂ.  

 

 

 

Theorem:  Let 𝑓(𝑧) and 𝑔(𝑧) be analytic functions in a common domain 𝐷.  If 

𝑓(𝑧) = 𝑔(𝑧) in some subdomain 𝐷′ ⊆ 𝐷 or on a curve 𝐶 interior to D, then 

𝑓(𝑧) = 𝑔(𝑧) everywhere in D. 

 

 

Corollary: If 𝑓(𝑧) is analytic in a domain 𝐷 and 𝑓(𝑧) = 0 on some subdomain 

 𝐷′ ⊆ 𝐷 or on a curve 𝐶 interior to 𝐷, then 𝑓(𝑧) = 0 on 𝐷. 
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Theorem:  Let 𝑓(𝑧) be analytic and not identically zero in a domain 𝐷 with 

𝑓(𝑧0) = 0,  𝑧0 ∈ 𝐷.  Then 𝑧0 is an isolated zero; that is, there is a 

neighborhood about 𝑧 = 𝑧0 where 𝑓(𝑧) is non-zero except at 𝑧 = 𝑧0.  

 

 

Proof: Since 𝑓(𝑧) is analytic in 𝐷 it has a Taylor series about 𝑧 = 𝑧0: 

                                       𝑓(𝑧) = ∑
𝑓(𝑗)(𝑧0)

𝑗!

∞
𝑗=0 (𝑧 − 𝑧0)𝑗.  

 

 

If 𝑓(𝑧) has a zero of order 𝑚 at 𝑧 = 𝑧0 then: 

                                      𝑓(𝑧) = ∑
𝑓(𝑗)(𝑧0)

𝑗!

∞
𝑗=𝑚 (𝑧 − 𝑧0)𝑗.  

 

𝑚 must be finite otherwise 𝑓(𝑧) = 0 for all 𝑧 ∈ 𝐷 (and it’s not by assumption).  

 

 

Thus we can write:     

                                      𝑓(𝑧) = (𝑧 − 𝑧0)𝑚𝑔(𝑧) 

where 𝑔(𝑧) has a Taylor series around 𝑧 = 𝑧0 and 𝑔(𝑧0) ≠ 0.  

 

 

Since 𝑔(𝑧) is analytic (it has a Taylor series that converges to it) in 𝐷, it must also 

be continuous in D.   

 

 

Hence we can find a neighborhood around 𝑧 = 𝑧0 such that 𝑔(𝑧) ≠ 0.   

 

 

But in that neighborhood 𝑓(𝑧) ≠ 0  since 𝑓(𝑧) = (𝑧 − 𝑧0)𝑚𝑔(𝑧).  

 

 

Hence 𝑧 = 𝑧0 is an isolated zero of 𝑓(𝑧). 


