Sequences and Series of Complex Functions
Let f,(z),n = 1,2,3, ... be a sequence of complex functions on a region D € C.

ex. f,(2) = ni n=123,..; z€C-{0}

fi(z) = %
f(2) = o

1
f3(2) =3

Def. We say f,(Z) converges pointwise to f(z) on D if lim f,,(z) = f(2)
n—oo
for each pointz € D.

This means for each z € D, given € > 0 there existsan N € Z* depending on €
and z, such that whenevern > N, |f,(2) — f(2)| < €.

If the limit doesn’t exist (or is infinite) we say the sequence diverges for those
values of z.



1
Ex. Prove that the f,,(z) = — converges pointwise to f(z) =0 forall

z € C—{0}.

To prove this we must show that for each point z € C — {0}, givenany e > 0
there exists an N € Z% depending on € and z, such that whenevern > N,

1

——0] <e.
nz

We start with the € statement and try to work “backwards” by solving for n to
find a N that will work.

1
nz

<E€E

|1| < elz|
n

1
~< €lz| sincen >0

1
n> )
€lz|
1
let N > )
€lz|

1
Now let’s show that N > T works, i.e. forces the € statement to be true.
€|Z

1

€|z

If N > | thenn = N means

1

€lz|

n=>N>

n|Z|>l
€

1
—< €
Inz|

1
— =0l <eE€.

nz




Thus f,,(z) = 1/nz converges pointwise to f(z) = 0 forallz € C — {0}.

Notice that the N we found depended on both € and z.

An infinite series of function, Z;il gj (z), where gj(Z) is a complex function,

can be viewed as a limit of an infinite sequence of partial sums {S;,(z)}, where:
Sn(2) = ?:1 gj(Z)-

We say Z;’il g (2) converges to a function S(z) if lim S, (z) = S(2).
n—-oo

—and Sn(z) = Z—l—l-l— + + -|-—

In this case: g](Z) =7

Notice that if lim S,,(z) = §(z), that s, the series does converge, then
n—o>00

lim g,(z) = AI_EEO(Sn(Z) — Sn-1(2))

n—-0oo

= lim S,(z) — lim S,,_{(2)
n—-o0o n—-oo
=S(z)—S(z) =0.

Thus, just as is true for the convergence of an infinite sum of real numbers, the

nt" term must go to O for all values of Z for which the series converges.

Def. We say a sequence of functions, S,,(2), z € D € C, converges uniformly
to S(z) if for all € > 0 there exists an N (which depends just on € and not z)
such thatifn = N, then |S,(z) — S(2)| < €forallz € D.



Thus for a sequence of functions to converge uniformly in D, we must be able to
find a single N that forces the € statement to be true forall Z € D. In other
words, N does NOT depend on which point Z we are at.

Note: Uniform convergence implies pointwise convergence, but pointwise
convergence does not imply uniform convergence.

1
Ex. The sequence f,,(z) = —— converges pointwise to f(z) =0 forall

z € C — {0}, but not uniformly.

When we showed the pointwise convergence we found that the € statement

i—0<e

nz

1

elz| °

was egivalentto: n >

But for any fixed €, |z| can be arbitrarily close to 0 so N would need to grow
toward 00 and hence N would have to depend on z. Thus {f;,(z)} does not
converge uniformly to f(z) = 0.

1
Ex. Show that the sequence fn(Z) = —converges uniformly to f(Z) =0 in

the annulus, D, 1 <|z| < 10.

We must show given any € > 0 there exists an N, which depends only on € (and
not on the point z) such thatif n = N then

i—O<e.

nz




Notice that in this case where 1 < |z| < 10 the smallest |z| can beis 1. That

wasn’t the case in our previous example where z € C — {0}.

So now if we solve the € inequality we get:
1
nz

<€

|1| < elz|
n

%< €lz| sincen >0

1
n> .
€|z|
1 1
Butsincel < |z| = <-.
€lz| €

1
So now if we choose N > o the € inequality should work.

(Notice that N only depends on € and not Z).

Now let’s show that this N forces the € inequality to work.

1
IfnZN>Ethen

1 1
n>-2>= because 1 < |z, so
€ €|z|
1 . : .
- < €|z] since both sides are positive.
1 1 1
|—| < €|z| becausen > 0,s0 — = |—|
n n n
1 1
—| <€ = |——0[<e.
nz nz
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Thus we have f,,(z) = — converges uniformly to f(z) = 0 intheannulus, D,

1<|z|] <10.

Theorem: let f, (2) be a sequence of continuous functions that converges
uniformly to f(2) in D. Then f(z) is continuous and for any finite contour C

inside of D: lim fC fn(2)dz = fC f(z)dz.

n—>0o

Proof: We must show that given any point a € D, that for every € > 0 there
existsa d > O suchthatif |z —a| < § then |f(2z) — f(a)| < € (herethe §
can depend on the point a).

Choose any pointa € D, and fixan € > 0.

By the triangle inequality we know that:

If (@) — f(@| = |f(2) = fu@| + |/ (2) = fu(@)]| + |fn(a) — f(a)].
Now let’s show that each expression on the RHS can be made less than g .

Since f;,(z) converges uniformly to f(z) in D, we know there existsa N € Z*
such thatifn = N then |f(2) — f,(2)| < gfor anyz € D.

€
Thus the first and third expressions on the RHS can be made less than E by

choosingn = N.

Since f;,(2) is continuous at Z = a we know there existsa & > 0 such that if
|z —al < 6 then |f(2) — f(a)| < g Thus with this &

|If(z) — f(a)] <§+§+§ = €, and f(z) is continuous at z = a.



To show that lim fC fn(2)dz = fC f(z)dz, we must show givenany € > 0
n—-oo

there existsa N € Z™ such thatifn = N then

J, fu@dz— [, f(2)dz| <e.

But since f;,(z) converges uniformly to f(z) in D we know that given any € > 0
there existsa N € Z* such thatifn = N then |f,,(z) — f(2)| < %, for all

Z € C and L =length of C.

Soforn = N:
|f, @dz = [, fdzl = | [, (h(2) = f(2))dz
< I, 1h(@ - F@lldz
<(¢)w =«

Hence rlll_r)glo fc fn(2)dz = fc f(z)dz.

A corollary of this theorem is that if the partial sums of a series:

Sn(2) = Xj-19;(2)

are continuous and converge uniformly to S(z) then

Z;‘;lfc gj(2)dz = fc Y= 9j(2)dz = fc S(z)dz.



Def. A sequence of complex numbers {Z,, } is called a Cauchy sequence if for all
€ > 0, there existsa N € Z* such thatif m,n = N then |z,, — z,| < €.

Theorem: If {f,,(z)} is a Cauchy sequence for each z € D, D aregionin C,
then there is a function f(z) such that {f;,(z)} converges to f (z).

The above theorem follows from the fact that every Cauchy sequence of real
numbers converges in R, and the following:

fa(2) = up(x,y) + ivy(x,y)
[un (6, y) — w0, Y)| < |fn(2) — fm(2) <€
|Un(x1y) - Um(x,y)l < |fn(Z) _fm(Z)l <e€.

This says that if { f;, (z)} is a Cauchy sequence then so are {u,(x, y)} and
{v,(x,y)}. Hence {u,(x,y)} converges tou(x,y) and {v,(x,y)} converges
tov(x,y).

Thus {f,,(2)} convergesto f(z) = u(x,y) + iv(x,y).

The next theorem gives us a powerful tool to prove that a series of functions

converges uniformly in a region D € C



Theorem (Weierstrass M test): Let |gj (Z)| < Mj inaregion D < C, with
M; € R constants. Ifz;';l M; converges, then the series S(z) = Z;’;l gj(2)

converges uniformly in D.

Proof: Letn > m and S, (z) = Xj=; gj(2). Then
1S2(2) = S (2| = | Xj=ms19,(2) |
< Yieme119;(@)]
< Yieme1Mj < Xitme1 M;

Since Z;’;l M; converges we know there'san N € Z* such that if
oo
mz=N, Yiim M <e.

Thus {S,,(2)} converges uniformly to S(z) in D.

Zn
Ex. Prove that Yp—q —F—== converges uniformly for |z| < 1.

Z 1

n 1
<| |< L
n n+1| - Invn+1l —

1

For |z| < 1 we have:

3 3

nz nz
. 0o 1 ., . . 3

Notice that anl —3 converges because it's a p-series with p = > > 1.

nz
1

So if we let Mj = —5 then we have:
j2

zJ

|gj(Z)| < M; (here gj(Z) = jﬁ) and 2;‘;1 M; converges.

ZTI_

So by the Weierstrass M test Z?{;l converges uniformly for |z| < 1.

nvn+1
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n

Ex. Show Yimeq Z€ " converges uniformly on 1 < |z| < 4 and Re(z) = 3.

|ze ™| = |z||e™™| < 4|e ™ ™#| because |z| < 4.

Z = x + 1y thus:

4le~"?| = 4|e—n(x+iy)| — 4|e—nxe—nyi| = 4|le x|,

x =Re(z) = 3; so

|ze 2| < 4|le | = 4|le ™| < 4737

Thus we have:

e—3

1—e‘3)

woide B =4leP et +e T+ ] = 4(

(Geometric series).

Soif we let M; = 4e~3J, then |gj(Z)| < Mj (here gj(Z) = Ze_jz) and
Z?;l Mj converges.

Thus the series Y,p—1 Z€ " converges uniformlyon 1 < |z| < 4 and
Re(z) = 3 by the Weierstrass M test.
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Ex. Show that the Riemann Zeta function ((Z) = Zflozl n~%, converges
uniformly for Re(z) = 1 + a, forany a > 0.

Let z = x + iy, then we have:

In~?| = |e—zlogn|

— |e—(x+iy)logn|

— |e—xlogn||e—iylogn|; (leiAl =1, A€R)
— |e—xlogn|

= [n77|

=< =M,

nxX — nilta

1
2;;0:1 M, = 270{;1 Tta which converges because it's a p-series with

p=1+a>1.

Thus Z?{;l Nn~% converges uniformly for Re(z) = 1 + «, forany @ > 0 by
the Weierstrass M test.
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A corollary of the Weierstrass M test is the Ratio Test for a complex series.

Theorem: Suppose |g;(2)]| is bounded for z € D € C and

gj+1(2) < .
IOl e f>1
9@ | = J

Then the series: S(z) = Zj’;l 9j (z) is uniformly convergentin D.

gz(Z)) (93(2)) ) gn(2)

Proof: We can write: gn(Z) =01 (Z) (gl(Z) 52 2

Since |g1(2)] is bounded we cansay:  |g41(2)| < K.

Since 9j41%) <M<1, j>1lwehave
gj(z
|gn(2)| < KM™1.
Thus ‘]?';1|gj(z)| < Kz;ozl M1 = ﬁ (geometric series).

So by the Weierstrass M test 2;’;1 g (z) converges uniformly to S(z) in D since

K

|g](Z)| < KMj_l = M] and Z(])o:lM] = M

converges.

Def. The largest R for which a power series Zﬁo aij converges inside the disk

|z| < R is called the radius of convergence of the power series.

The radius of convergence of a power series can turn out to be 0, 00, or any
positive real number.
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Ex. Find the radius of convergence, R, of:

Zoo z" b Zoo N\,N w n° 2n
d. Tl=0;' . nzl(n.)Z B C. nzlmz .

By the ratio test we need to find where: lim In+1(2) < 1.
n-oo | g n(2)
Tl+1 n!
a. lim = |—|—0<1foraIIZE(C
n—oo (n+1)'z” n—>oo
Thus R = oo,
1)! :
b. A_)OO %| = 7{1_I>I010|(n + 1)z| = o unlessz = 0.
Thus R = 0.
¢ lim (n+1)"*1 2(n+1) — lim |(n+1)n+1 1 ZZ|
n—ooo I (n+1)! nnz2n n—-oo n+1
n
— lim &2 ZZ|
n—oo nn
+1
= Jim |2
. 1
= lim |(1 + —)nZ2|
n—oo n
=el|z?| <1
1
|z|? <=
1
|z| < NG
1
So R == ﬁ



