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                                      Sequences and Series of Complex Functions    

 

Let 𝑓𝑛(𝑧), 𝑛 = 1,2,3, …  be a sequence of complex functions on a region 𝐷 ⊆ ℂ.  

 

Ex.  𝑓𝑛(𝑧) =
1

𝑛𝑧
       𝑛 = 1,2,3, … ;    𝑧 ∈ ℂ − {0}.   

       𝑓1(𝑧) =
1

𝑧
  

       𝑓2(𝑧) =
1

2𝑧
 

       𝑓3(𝑧) = 
1

3𝑧
  

           ⋮  

 

 

 

Def.  We say  𝒇𝒏(𝒛) converges pointwise to 𝒇(𝒛) on 𝐷 if  𝑙𝑖𝑚
𝑛→∞

𝑓𝑛(𝑧) = 𝑓(𝑧) 

for each point 𝑧 ∈ 𝐷.  

 

 

This means for each 𝑧 ∈ 𝐷, given 𝜖 > 0 there exists an 𝑁 ∈ ℤ+ depending on 𝜖 

and  𝑧, such that whenever 𝑛 ≥ 𝑁,    |𝑓𝑛(𝑧) − 𝑓(𝑧)| < 𝜖. 

 

 

If the limit doesn’t exist (or is infinite) we say the sequence diverges for those 

values of 𝑧.  
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Ex.  Prove that the 𝑓𝑛(𝑧) =
1

𝑛𝑧
 converges pointwise to 𝑓(𝑧) = 0  for all                 

       𝑧 ∈ ℂ − {0}. 

  

To prove this we must show that for each point 𝑧 ∈ ℂ − {0}, given any 𝜖 > 0 

there exists an 𝑁 ∈ ℤ+ depending on 𝜖 and 𝑧, such that whenever 𝑛 ≥ 𝑁,     

|
1

𝑛𝑧
− 0| < 𝜖. 

We start with the 𝜖 statement and try to work “backwards” by solving for 𝑛 to 

find a 𝑁 that will work. 

|
1

𝑛𝑧
| < 𝜖  

  |
1

𝑛
| <  𝜖|𝑧|  

     
1

𝑛
< 𝜖|𝑧|     since 𝑛 > 0 

      𝑛 >
1

 𝜖|𝑧| 
 . 

Let   𝑁 >
1

 𝜖|𝑧| 
 . 

Now let’s show that 𝑁 >
1

 𝜖|𝑧| 
 works, i.e. forces the 𝜖 statement to be true. 

If 𝑁 >
1

 𝜖|𝑧| 
 then 𝑛 ≥ 𝑁 means 

 𝑛 ≥ 𝑁 >
1

 𝜖|𝑧| 
  

      𝑛|𝑧| >
1

𝜖
  

        
1

|𝑛𝑧|
< 𝜖  

|
1

𝑛𝑧
− 0| < 𝜖 . 



3 
 

Thus  𝑓𝑛(𝑧) = 1/𝑛𝑧 converges pointwise to 𝑓(𝑧) = 0  for all 𝑧 ∈ ℂ − {0}. 

Notice that the 𝑁 we found depended on both 𝜖 and 𝑧. 

 

An infinite series of function,  ∑ 𝑔𝑗(𝑧),∞
𝑗=1    where 𝑔𝑗(𝑧) is a complex function, 

can be viewed as a limit of an infinite sequence of partial sums {𝑆𝑛(𝑧)}, where: 

                                    𝑆𝑛(𝑧) = ∑ 𝑔𝑗(𝑧)𝑛
𝑗=1 . 

We say ∑ 𝑔𝑗(𝑧)∞
𝑗=1  converges to a function 𝑆(𝑧) if lim

𝑛→∞
𝑆𝑛(𝑧) = 𝑆(𝑧).      

  

Ex.  ∑
𝑧𝑗

𝑗!
= 1 + 𝑧 +

𝑧2

2!
∞
𝑗=0 +

𝑧3

3!
+ ⋯.   

In this case:   𝑔𝑗(𝑧) =
𝑧𝑗

𝑗!
  and    𝑆𝑛(𝑧) = ∑

𝑧𝑗

𝑗!
= 1 + 𝑧 +

𝑧2

2!
+ ⋯ +

𝑧𝑛

𝑛!
𝑛
𝑗=0  .   

 

Notice that if lim
𝑛→∞

𝑆𝑛(𝑧) = 𝑆(𝑧),  that is, the series does converge, then 

                 lim
𝑛→∞

𝑔𝑛(𝑧) = lim
𝑛→∞

(𝑆𝑛(𝑧) − 𝑆𝑛−1(𝑧)) 

                                  = lim
𝑛→∞

𝑆𝑛(𝑧) − lim
𝑛→∞

𝑆𝑛−1(𝑧) 

                                  = 𝑆(𝑧) − 𝑆(𝑧) = 0. 

Thus, just as is true for the convergence of an infinite sum of real numbers, the 

𝑛𝑡ℎ term must go to 0 for all values of 𝑧 for which the series converges. 

 

Def.  We say a sequence of functions, 𝑆𝑛(𝑧), 𝑧 ∈ 𝐷 ⊆ ℂ, converges uniformly 

to 𝑆(𝑧) if for all 𝜖 > 0 there exists an 𝑁 (which depends just on 𝜖 and not 𝑧) 

such that if 𝑛 ≥ 𝑁,  then |𝑆𝑛(𝑧) − 𝑆(𝑧)| < 𝜖 for all 𝑧 ∈ 𝐷.  
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Thus for a sequence of functions to converge uniformly in 𝐷, we must be able to 

find a single 𝑁 that forces the 𝜖 statement to be true for all 𝑧 ∈ 𝐷.  In other 

words, 𝑁 does NOT depend on which point 𝑧 we are at. 

Note: Uniform convergence implies pointwise convergence, but pointwise 

convergence does not imply uniform convergence. 

 

Ex.  The sequence  𝑓𝑛(𝑧) =
1

𝑛𝑧
 converges pointwise to 𝑓(𝑧) = 0  for all 

        𝑧 ∈ ℂ − {0}, but not uniformly.    

 

When we showed the pointwise convergence we found that the 𝜖 statement 

                                     |
1

𝑛𝑧
− 0| < 𝜖 

was eqivalent to:      𝑛 >
1

 𝜖|𝑧| 
 . 

But for any fixed 𝜖,  |𝑧| can be arbitrarily close to 0 so 𝑁 would need to grow 

toward ∞ and hence 𝑁 would have to depend on 𝑧.  Thus {𝑓𝑛(𝑧)} does not 

converge uniformly to 𝑓(𝑧) = 0.  

 

Ex.  Show that the sequence  𝑓𝑛(𝑧) =
1

𝑛𝑧
 converges uniformly to 𝑓(𝑧) = 0  in 

        the  annulus,  𝐷,   1 ≤ |𝑧| ≤ 10. 

      

    

We must show given any 𝜖 > 0 there exists an 𝑁, which depends only on  𝜖 (and 

not on the point 𝑧) such that if 𝑛 ≥ 𝑁 then 

                                                     |
1

𝑛𝑧
− 0| < 𝜖.   
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Notice that in this case where 1 ≤ |𝑧| ≤ 10 the smallest |𝑧| can be is 1.  That 

wasn’t the case in our previous example where 𝑧 ∈ ℂ − {0}. 

 

 So now if we solve the 𝜖 inequality we get: 

|
1

𝑛𝑧
| < 𝜖  

  |
1

𝑛
| <  𝜖|𝑧|  

    
1

𝑛
< 𝜖|𝑧|     since 𝑛 > 0 

    𝑛 >
1

 𝜖|𝑧| 
 .  

But since 1 ≤ |𝑧|  ⟹   
1

 𝜖|𝑧| 
≤

1

𝜖
 .  

 

So now if we choose  𝑁 >
1

𝜖
 , the 𝜖 inequality should work.   

(Notice that 𝑁 only depends on 𝜖 and not 𝑧).  

 

Now let’s show that this 𝑁 forces the 𝜖 inequality to work. 

If 𝑛 ≥ 𝑁 >
1

𝜖
  then 

𝑛 >
1

𝜖
≥

1

 𝜖|𝑧| 
      because 1 ≤ |𝑧|,  so 

1

𝑛
< 𝜖|𝑧|               since both sides are positive. 

|
1

𝑛
| < 𝜖|𝑧|           because 𝑛 > 0, so  

1

𝑛
= |

1

𝑛
|. 

|
1

𝑛𝑧
| < 𝜖            ⟹    |

1

𝑛𝑧
− 0| < 𝜖. 
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Thus we have 𝑓𝑛(𝑧) =
1

𝑛𝑧
 converges uniformly to 𝑓(𝑧) = 0  in the annulus, 𝐷, 

1 ≤ |𝑧| ≤ 10.  

 

Theorem: let 𝑓𝑛(𝑧) be a sequence of continuous functions that converges 

uniformly to 𝑓(𝑧) in 𝐷.  Then 𝑓(𝑧) is continuous and for any finite contour 𝐶  

inside of 𝐷:                     lim
𝑛→∞

∫ 𝑓𝑛(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧.
𝐶𝐶

 

 

Proof:  We must show that given any point 𝑎 ∈ 𝐷, that for every 𝜖 > 0 there 

exists a 𝛿 > 0 such that if  |𝑧 − 𝑎| < 𝛿 then |𝑓(𝑧) − 𝑓(𝑎)| < 𝜖 (here the 𝛿 

can depend on the point 𝑎). 

Choose any point 𝑎 ∈ 𝐷, and fix an 𝜖 > 0. 

By the triangle inequality we know that: 

|𝑓(𝑧) − 𝑓(𝑎)| ≤ |𝑓(𝑧) − 𝑓𝑛(𝑧)| + |𝑓𝑛(𝑧) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)|. 

 

Now let’s show that each expression on the RHS can be made less than 
𝜖

3
 .  

 

Since 𝑓𝑛(𝑧) converges uniformly to 𝑓(𝑧) in 𝐷, we know there exists a 𝑁 ∈ ℤ+ 

such that if 𝑛 ≥ 𝑁 then |𝑓(𝑧) − 𝑓𝑛(𝑧)| <
𝜖

3
 for any 𝑧 ∈ 𝐷. 

Thus the first and third expressions on the RHS can be made less than 
𝜖

3
 by 

choosing 𝑛 ≥ 𝑁. 

 

Since 𝑓𝑛(𝑧) is continuous at 𝑧 = 𝑎 we know there exists a 𝛿 > 0 such that if 

|𝑧 − 𝑎| < 𝛿 then |𝑓(𝑧) − 𝑓(𝑎)| <
𝜖

3
 .  Thus with this  𝛿 

|𝑓(𝑧) − 𝑓(𝑎)| <
𝜖

3
+

𝜖

3
+

𝜖

3
= 𝜖, and 𝑓(𝑧) is continuous at 𝑧 = 𝑎. 
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To show that lim
𝑛→∞

∫ 𝑓𝑛(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧
𝐶𝐶

, we must show given any 𝜖 > 0 

there exists a 𝑁 ∈ ℤ+ such that if 𝑛 ≥ 𝑁 then  

                           | ∫ 𝑓𝑛(𝑧)𝑑𝑧 − ∫ 𝑓(𝑧)𝑑𝑧| < 𝜖
𝐶𝐶

. 

 

But since 𝑓𝑛(𝑧) converges uniformly to 𝑓(𝑧) in 𝐷 we know that given any 𝜖 > 0 

there exists a 𝑁 ∈ ℤ+ such that if 𝑛 ≥ 𝑁 then |𝑓𝑛(𝑧) − 𝑓(𝑧)| <
𝜖

𝐿
 , for all   

𝑧 ∈ 𝐶 and 𝐿 =length of 𝐶. 

 

So for 𝑛 ≥ 𝑁: 

         | ∫ 𝑓𝑛(𝑧)𝑑𝑧 − ∫ 𝑓(𝑧)𝑑𝑧| = | ∫ (𝑓𝑛(𝑧) − 𝑓(𝑧))𝑑𝑧|
𝐶𝐶𝐶

      

                                                           ≤ ∫ |𝑓𝑛(𝑧) − 𝑓(𝑧)||𝑑𝑧|
𝐶

 

                                                           ≤ (
𝜖

𝐿
) (𝐿) = 𝜖.  

 

Hence lim
𝑛→∞

∫ 𝑓𝑛(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧
𝐶𝐶

. 

 

 

 

A corollary of this theorem is that if the partial sums of a series: 

                                         𝑆𝑛(𝑧) = ∑ 𝑔𝑗(𝑧)𝑛
𝑗=1  

are continuous and converge uniformly to 𝑆(𝑧) then 

             ∑ ∫ 𝑔𝑗(𝑧)𝑑𝑧 = ∫ ∑ 𝑔𝑗(𝑧)𝑑𝑧 = ∫ 𝑆(𝑧)𝑑𝑧
𝐶

∞
𝑗=1𝐶𝐶

∞
𝑗=1 . 
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Def.  A sequence of complex numbers {𝑧𝑛} is called a Cauchy sequence if for all 

𝜖 > 0, there exists a 𝑁 ∈ ℤ+ such that if 𝑚, 𝑛 ≥ 𝑁 then |𝑧𝑛 − 𝑧𝑚| < 𝜖. 

 

Theorem:  If {𝑓𝑛(𝑧)} is a Cauchy sequence for each 𝑧 ∈ 𝐷,  𝐷 a region in ℂ, 

                 then there is a function 𝑓(𝑧) such that {𝑓𝑛(𝑧)} converges to 𝑓(𝑧). 

 

The above theorem follows from the fact that every Cauchy sequence of real 

numbers converges in ℝ,  and the following: 

                          𝑓𝑛(𝑧) = 𝑢𝑛(𝑥, 𝑦) + 𝑖𝑣𝑛(𝑥, 𝑦) 

              |𝑢𝑛(𝑥, 𝑦) − 𝑢𝑚(𝑥, 𝑦)| ≤ |𝑓𝑛(𝑧) − 𝑓𝑚(𝑧)| < 𝜖 

                 |𝑣𝑛(𝑥, 𝑦) − 𝑣𝑚(𝑥, 𝑦)| ≤ |𝑓𝑛(𝑧) − 𝑓𝑚(𝑧)| < 𝜖. 

 

This says that if {𝑓𝑛(𝑧)} is a Cauchy sequence then so are {𝑢𝑛(𝑥, 𝑦)} and 

{𝑣𝑛(𝑥, 𝑦)}.  Hence {𝑢𝑛(𝑥, 𝑦)} converges to 𝑢(𝑥, 𝑦) and {𝑣𝑛(𝑥, 𝑦)} converges 

to 𝑣(𝑥, 𝑦). 

 

Thus  {𝑓𝑛(𝑧)} converges to 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). 

 

 

The next theorem gives us a powerful tool to prove that a series of functions 

converges uniformly in a region  𝐷 ⊆ ℂ 

 

 

 



9 
 

Theorem (Weierstrass 𝑀 test):  Let |𝑔𝑗(𝑧)| ≤ 𝑀𝑗  in a region 𝐷 ⊆ ℂ, with    

𝑀𝑗 ∈ ℝ constants.  If ∑ 𝑀𝑗
∞
𝑗=1  converges, then the series 𝑆(𝑧) = ∑ 𝑔𝑗(𝑧)∞

𝑗=1  

converges uniformly in 𝐷. 

 

Proof:  Let 𝑛 > 𝑚 and 𝑆𝑛(𝑧) = ∑ 𝑔𝑗(𝑧)𝑛
𝑗=1 .  Then 

             |𝑆𝑛(𝑧) − 𝑆𝑚(𝑧)| = | ∑ 𝑔𝑗(𝑧)𝑛
𝑗=𝑚+1 | 

                                         ≤ ∑ |𝑔𝑗(𝑧)|𝑛
𝑗=𝑚+1  

                                         ≤ ∑ 𝑀𝑗 ≤ ∑ 𝑀𝑗
∞
𝑗=𝑚+1

𝑛
𝑗=𝑚+1  

           Since ∑ 𝑀𝑗
∞
𝑗=1  converges we know there's an 𝑁 ∈ ℤ+ such that if  

              𝑚 ≥ 𝑁,  ∑ 𝑀𝑗
∞
𝑗=𝑚+1 < 𝜖. 

           Thus {𝑆𝑛(𝑧)} converges uniformly to 𝑆(𝑧) in 𝐷. 

 

Ex.  Prove that ∑
𝑧𝑛

𝑛√𝑛+1
∞
𝑛=1  converges uniformly for |𝑧| ≤ 1.     

 

For |𝑧| ≤ 1 we have:         |
𝑧𝑛

𝑛√𝑛+1
| ≤ |

1

𝑛√𝑛+1
| ≤ |

1

𝑛
3
2

| =
1

𝑛
3
2

 .  

Notice that ∑
1

𝑛
3
2

∞
𝑛=1   converges because it's a 𝑝-series with 𝑝 =

3

2
> 1.   

So if we let 𝑀𝑗 =
1

𝑗
3
2

 then we have: 

|𝑔𝑗(𝑧)| ≤ 𝑀𝑗     (here 𝑔𝑗(𝑧) =
𝑧𝑗

𝑗√𝑗+1
 )  and ∑ 𝑀𝑗

∞
𝑗=1  converges. 

So by the Weierstrass 𝑀 test ∑
𝑧𝑛

𝑛√𝑛+1
∞
𝑛=1  converges uniformly for |𝑧| ≤ 1.  
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Ex.  Show  ∑ 𝑧𝑒−𝑛𝑧∞
𝑛=1  converges uniformly on 1 ≤ |𝑧| ≤ 4 and 𝑅𝑒(𝑧) ≥ 3.  

 

 

|𝑧𝑒−𝑛𝑧| = |𝑧||𝑒−𝑛𝑧| ≤ 4|𝑒−𝑛𝑧|    because  |𝑧| ≤ 4.      

 

𝑧 = 𝑥 + 𝑖𝑦 thus: 

4|𝑒−𝑛𝑧| = 4|𝑒−𝑛(𝑥+𝑖𝑦)| = 4|𝑒−𝑛𝑥𝑒−𝑛𝑦𝑖| = 4|𝑒−𝑛𝑥| ;   

 

 𝑥 = 𝑅𝑒(𝑧) ≥ 3;   so 

|𝑧𝑒−𝑛𝑧| ≤ 4|𝑒−𝑛𝑧| = 4|𝑒−𝑛𝑥| ≤ 4𝑒−3𝑛   

  

 Thus we have: 

∑ 4𝑒−3𝑛 = 4[𝑒−3 + 𝑒−6 + 𝑒−9 + ⋯ ] = 4(
𝑒−3

1−𝑒−3)∞
𝑛=1                 

(Geometric series).   

 

So if we let 𝑀𝑗 = 4𝑒−3𝑗, then |𝑔𝑗(𝑧)| ≤ 𝑀𝑗    (here 𝑔𝑗(𝑧) = 𝑧𝑒−𝑗𝑧 )  and 

∑ 𝑀𝑗
∞
𝑗=1  converges.   

 

Thus the series ∑ 𝑧𝑒−𝑛𝑧∞
𝑛=1  converges uniformly on 1 ≤ |𝑧| ≤ 4 and   

𝑅𝑒(𝑧) ≥ 3 by the Weierstrass 𝑀 test. 
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Ex.   Show that the Riemann Zeta function 𝜁(𝑧) = ∑ 𝑛−𝑧∞
𝑛=1 , converges 

         uniformly for 𝑅𝑒(𝑧) ≥ 1 + 𝛼, for any 𝛼 > 0. 

 

Let 𝑧 = 𝑥 + 𝑖𝑦, then we have: 

       |𝑛−𝑧| = |𝑒−𝑧𝑙𝑜𝑔𝑛| 

                 = |𝑒−(𝑥+𝑖𝑦)𝑙𝑜𝑔𝑛| 

                 = |𝑒−𝑥𝑙𝑜𝑔𝑛||𝑒−𝑖𝑦𝑙𝑜𝑔𝑛|;                     (|𝑒𝑖𝐴| = 1, 𝐴 ∈ ℝ) 

                 = |𝑒−𝑥𝑙𝑜𝑔𝑛| 

                 = |𝑛−𝑥| 

                 =
1

𝑛𝑥 ≤
1

𝑛1+𝛼 = 𝑀𝑛. 

 

         ∑ 𝑀𝑛 =∞
𝑛=1 ∑

1

𝑛1+𝛼
∞
𝑛=1        which converges because it's a 𝑝-series with                 

                                                                  𝑝 = 1 + 𝛼 > 1. 

  

Thus  ∑ 𝑛−𝑧∞
𝑛=1  converges uniformly for 𝑅𝑒(𝑧) ≥ 1 + 𝛼, for any 𝛼 > 0 by 

the Weierstrass 𝑀 test. 
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A corollary of the Weierstrass 𝑀 test is the Ratio Test for a complex series.  

 

Theorem:  Suppose |𝑔1(𝑧)| is bounded for 𝑧 ∈ 𝐷 ⊆ ℂ and  

                                     |
𝑔𝑗+1(𝑧)

𝑔𝑗(𝑧)
| ≤ 𝑀 < 1,    𝑗 > 1 

Then the series:        𝑆(𝑧) = ∑ 𝑔𝑗(𝑧)∞
𝑗=1     is uniformly convergent in 𝐷. 

 

Proof:  We can write:         𝑔𝑛(𝑧) = 𝑔1(𝑧) ( 
𝑔2(𝑧)

𝑔1(𝑧)
) (

𝑔3(𝑧)

𝑔2(𝑧)
) … (

𝑔𝑛(𝑧)

𝑔𝑛−1(𝑧)
).                          

Since |𝑔1(𝑧)| is bounded we can say:      |𝑔1(𝑧)| ≤ 𝐾. 

Since |
𝑔𝑗+1(𝑧)

𝑔𝑗(𝑧)
| ≤ 𝑀 < 1,    𝑗 > 1 we have 

                             |𝑔𝑛(𝑧)| ≤ 𝐾𝑀𝑛−1.  

 

Thus              ∑ |𝑔𝑗(𝑧)| ≤ 𝐾 ∑ 𝑀𝑗−1∞
𝑗=1

∞
𝑗=1 =

𝐾

1−𝑀
    (geometric series). 

 

So by the Weierstrass 𝑀 test ∑ 𝑔𝑗(𝑧)∞
𝑗=1  converges uniformly to 𝑆(𝑧) in 𝐷 since 

|𝑔𝑗(𝑧)| ≤ 𝐾𝑀𝑗−1 = 𝑀𝑗       and   ∑ 𝑀𝑗 =
𝐾

1−𝑀
∞
𝑗=1   converges.   

 

Def.  The largest 𝑅 for which a power series ∑ 𝑎𝑗𝑧𝑗∞
𝑗=0  converges inside the disk 

|𝑧| < 𝑅  is called the radius of convergence of the power series. 

 

The radius of convergence of a power series can turn out to be 0, ∞, or any 

positive real number. 
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Ex.  Find the radius of convergence, 𝑅, of: 

a.     ∑
𝑧𝑛

𝑛!
∞
𝑛=0  ,      b.     ∑ (𝑛!)𝑧𝑛∞

𝑛=1 ,      c.    ∑
𝑛𝑛

𝑛!
𝑧2𝑛∞

𝑛=1 . 

 

By the ratio test we need to find where:    lim
𝑛→∞

|
𝑔𝑛+1(𝑧)

𝑔 𝑛(𝑧)
| < 1. 

a.   lim
𝑛→∞

|
𝑧𝑛+1

(𝑛+1)!

𝑛!

𝑧𝑛| = lim
𝑛→∞

|
𝑧

𝑛+1
| = 0 < 1  for all 𝑧 ∈ ℂ. 

Thus 𝑅 = ∞. 
 

b.   lim
𝑛→∞

|
(𝑛+1)!𝑧𝑛+1

(𝑛!)𝑧𝑛 | = lim
𝑛→∞

|(𝑛 + 1)𝑧| = ∞   unless 𝑧 = 0. 

Thus 𝑅 = 0. 
 

c. lim
𝑛→∞

|
(𝑛+1)𝑛+1

(𝑛+1)!
𝑧2(𝑛+1) 𝑛!

𝑛𝑛𝑧2𝑛
| = lim

𝑛→∞
|

(𝑛+1)𝑛+1

𝑛𝑛

1

𝑛+1
𝑧2|   

                                            

                                                    = lim
𝑛→∞

|
(𝑛+1)𝑛

𝑛𝑛 𝑧2|   

 

                                                     = lim
𝑛→∞

|(
𝑛+1

𝑛
)𝑛𝑧2| 

                                      

                                                      = lim
𝑛→∞

|(1 +
1

𝑛
)𝑛𝑧2|     

                                      

 

                                                           = 𝑒|𝑧2| < 1  

 

                                                                  |𝑧|2 <
1

𝑒
  

 

                                                                                                                                         |𝑧| <
1

√𝑒
                                             

             So  𝑅 =
1

√𝑒
 .                                                         


