Let $f_n(z)$, $n=1$, 2 , 3 , ... be a sequence of complex functions on a region $D\subseteq\mathbb{C}.$

Ex.
$$
f_n(z) = \frac{1}{nz}
$$
 $n = 1,2,3,...$; $z \in \mathbb{C} - \{0\}$.
\n $f_1(z) = \frac{1}{z}$
\n $f_2(z) = \frac{1}{2z}$
\n $f_3(z) = \frac{1}{3z}$
\n...

Def. We say $\boldsymbol{f_n(z)}$ converges pointwise to $\boldsymbol{f(z)}$ on D if $\displaystyle \lim_{n\to\infty}$ $\lim_{n\to\infty} f_n(z) = f(z)$ for each point $z \in D$.

This means for each $z\in D$, given $\epsilon>0$ there exists an $N\in \mathbb{Z}^+$ depending on ϵ and z , such that whenever $n \geq N$, $|f_n(z) - f(z)| < \epsilon$.

If the limit doesn't exist (or is infinite) we say the sequence **diverges** for those values of z .

Ex. Prove that the $f_n(z) = \frac{1}{n^2}$ $\frac{1}{nz}$ converges pointwise to $f(z) = 0$ for all $z \in \mathbb{C} - \{0\}.$

To prove this we must show that for each point $z \in \mathbb{C} - \{0\}$, given any $\epsilon > 0$ there exists an $N\in\mathbb{Z}^+$ depending on ϵ and z , such that whenever $n\geq N$,

$$
\left|\frac{1}{nz} - 0\right| < \epsilon.
$$

We start with the ϵ statement and try to work "backwards" by solving for n to find a N that will work.

$$
\left|\frac{1}{nz}\right| < \epsilon
$$
\n
$$
\left|\frac{1}{n}\right| < \epsilon |z|
$$
\n
$$
\frac{1}{n} < \epsilon |z| \quad \text{since } n > 0
$$
\n
$$
n > \frac{1}{\epsilon |z|}.
$$
\nLet $N > \frac{1}{\epsilon |z|}.$

Now let's show that $N > \frac{1}{16}$ $\frac{1}{\epsilon |z|}$ works, i.e. forces the ϵ statement to be true.

If
$$
N > \frac{1}{\epsilon |z|}
$$
 then $n \ge N$ means
\n $n \ge N > \frac{1}{\epsilon |z|}$
\n $n|z| > \frac{1}{\epsilon}$
\n $\frac{1}{|nz|} < \epsilon$
\n $\left|\frac{1}{nz} - 0\right| < \epsilon$.

Thus $f_n(z) = 1/nz$ converges pointwise to $f(z) = 0\,$ for all $z \in \mathbb{C} - \{0\}.$ Notice that the N we found depended on both ϵ and Z .

An infinite series of function, $\, \sum_{j=1}^\infty g_j(z)$, $\int\limits_{j=1}^{\infty}g_j(z)$, where $g_j(z)$ is a complex function, can be viewed as a limit of an infinite sequence of partial sums $\{S_n(z)\}\$, where:

$$
S_n(z) = \sum_{j=1}^n g_j(z).
$$

We say $\sum_{j=1}^{\infty} g_j(z)$ $\int\limits_{j=1}^{\infty}g_j(z)$ converges to a function $S(z)$ if $\lim\limits_{n\rightarrow\infty}$ $\lim_{n\to\infty} S_n(z) = S(z).$

Ex. $\sum_{i=0}^{\infty} \frac{z^j}{i!}$ $\frac{z^j}{j!} = 1 + z + \frac{z^2}{2!}$ 2! $\sum_{j=0}^{\infty} \frac{z^j}{i!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!}$ $\frac{2}{3!} + \cdots$. In this case: $g_j(z) = \frac{z^j}{i!}$ $\frac{z^j}{j!}$ and $S_n(z) = \sum_{j=0}^n \frac{z^j}{j!}$ $\frac{z^j}{j!} = 1 + z + \frac{z^2}{2!}$ $\frac{z^2}{2!} + \cdots + \frac{z^n}{n!}$ $n!$ \boldsymbol{n} $\frac{n}{j=0}$ $\frac{2^{n}}{i!}$ = 1 + z + $\frac{2}{2!}$ + \cdots + $\frac{2}{n!}$.

Notice that if lim $\lim_{n\to\infty} S_n(z) = S(z)$, that is, the series does converge, then

$$
\lim_{n \to \infty} g_n(z) = \lim_{n \to \infty} (S_n(z) - S_{n-1}(z))
$$

=
$$
\lim_{n \to \infty} S_n(z) - \lim_{n \to \infty} S_{n-1}(z)
$$

=
$$
S(z) - S(z) = 0.
$$

Thus, just as is true for the convergence of an infinite sum of real numbers, the n^{th} term must go to 0 for all values of \emph{z} for which the series converges.

Def. We say a sequence of functions, $S_n(z)$, $z\in D\subseteq \mathbb{C}$, converges uniformly to $S(z)$ if for all $\epsilon > 0$ there exists an N (which depends just on ϵ and not z) such that if $n \geq N$, then $|S_n(z) - S(z)| < \epsilon$ for all $z \in D$.

Thus for a sequence of functions to converge uniformly in D , we must be able to find a single N that forces the ϵ statement to be true for all $z \in D$. In other words, N does NOT depend on which point Z we are at.

Note: Uniform convergence implies pointwise convergence, but pointwise convergence does not imply uniform convergence.

Ex. The sequence
$$
f_n(z) = \frac{1}{nz}
$$
 converges pointwise to $f(z) = 0$ for all $z \in \mathbb{C} - \{0\}$, but not uniformly.

When we showed the pointwise convergence we found that the ϵ statement

$$
\left|\frac{1}{nz} - 0\right| < \epsilon
$$

 $\frac{1}{\epsilon |z|}$.

was eqivalent to: $n > \frac{1}{100}$

But for any fixed ϵ , |z| can be arbitrarily close to 0 so N would need to grow toward ∞ and hence N would have to depend on $z.$ Thus $\{f_n(z)\}$ does not converge uniformly to $f(z) = 0$.

Ex. Show that the sequence $f_n(z) = \frac{1}{n^2}$ $\frac{1}{nz}$ converges uniformly to $f(z) = 0$ in the annulus, D, $1 \leq |z| \leq 10$.

We must show given any $\epsilon > 0$ there exists an N, which depends only on ϵ (and not on the point *z*) such that if $n \geq N$ then

$$
\left|\frac{1}{nz} - 0\right| < \epsilon.
$$

Notice that in this case where $1 \leq |z| \leq 10$ the smallest $|z|$ can be is 1. That wasn't the case in our previous example where $z \in \mathbb{C} - \{0\}.$

So now if we solve the ϵ inequality we get:

$$
\left|\frac{1}{nz}\right| < \epsilon
$$
\n
$$
\left|\frac{1}{n}\right| < \epsilon |z|
$$
\n
$$
\frac{1}{n} < \epsilon |z| \quad \text{since } n > 0
$$
\n
$$
n > \frac{1}{\epsilon |z|}.
$$

But since $1 \leq |z| \Rightarrow \frac{1}{z}$ $\frac{1}{\epsilon |z|} \leq \frac{1}{\epsilon}$ $\frac{1}{\epsilon}$.

So now if we choose $N>\frac{1}{2}$ $\frac{1}{\epsilon}$, the ϵ inequality should work. (Notice that N only depends on ϵ and not Z).

Now let's show that this N forces the ϵ inequality to work.

If
$$
n \ge N > \frac{1}{\epsilon}
$$
 then
\n
$$
n > \frac{1}{\epsilon} \ge \frac{1}{\epsilon |z|} \text{ because } 1 \le |z|, \text{ so}
$$
\n
$$
\frac{1}{n} < \epsilon |z| \text{ since both sides are positive.}
$$
\n
$$
\left|\frac{1}{n}\right| < \epsilon |z| \text{ because } n > 0, \text{ so } \frac{1}{n} = \left|\frac{1}{n}\right|.
$$
\n
$$
\left|\frac{1}{nz}\right| < \epsilon \implies \left|\frac{1}{nz} - 0\right| < \epsilon.
$$

Thus we have $f_n(z) = \frac{1}{n^2}$ $\frac{1}{nz}$ converges uniformly to $f(z) = 0$ in the annulus, D, $1 \le |z| \le 10$.

Theorem: let $f_n(\overline{z})$ be a sequence of continuous functions that converges uniformly to $f(z)$ in D. Then $f(z)$ is continuous and for any finite contour C inside of D : $\lim_{n\to\infty}\int_C f_n(z)dz = \int_C f(z)dz.$

Proof: We must show that given any point $a \in D$, that for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $|z - a| < \delta$ then $|f(z) - f(a)| < \epsilon$ (here the δ can depend on the point a).

Choose any point $a \in D$, and fix an $\epsilon > 0$.

By the triangle inequality we know that:

$$
|f(z) - f(a)| \le |f(z) - f_n(z)| + |f_n(z) - f_n(a)| + |f_n(a) - f(a)|.
$$

Now let's show that each expression on the RHS can be made less than ϵ $\frac{2}{3}$.

Since $f_n(z)$ converges uniformly to $f(z)$ in D , we know there exists a $N\in\mathbb{Z}^+$ such that if $n \geq N$ then $|f(z) - f_n(z)| < \frac{\epsilon}{3}$ $rac{e}{3}$ for any $z \in D$.

Thus the first and third expressions on the RHS can be made less than ϵ 3 by choosing $n \geq N$.

Since
$$
f_n(z)
$$
 is continuous at $z = a$ we know there exists a $\delta > 0$ such that if $|z - a| < \delta$ then $|f(z) - f(a)| < \frac{\epsilon}{3}$. Thus with this δ
 $|f(z) - f(a)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$, and $f(z)$ is continuous at $z = a$.

To show that lim $\lim_{n\to\infty}\int_C f_n(z)dz = \int_C f(z)dz$, we must show given any $\epsilon > 0$ there exists a $N\in\mathbb{Z}^+$ such that if $n\geq N$ then

$$
|\int_C f_n(z)dz - \int_C f(z)dz| < \epsilon.
$$

But since $f_n(z)$ converges uniformly to $f(z)$ in D we know that given any $\epsilon > 0$ there exists a $N \in \mathbb{Z}^+$ such that if $n \geq N$ then $|f_n(z) - f(z)| < \frac{\epsilon}{L}$ $\frac{c}{L}$, for all $z \in C$ and L =length of C .

So for $n \geq N$:

$$
\begin{aligned} \left| \int_C f_n(z)dz - \int_C f(z)dz \right| &= \left| \int_C (f_n(z) - f(z))dz \right| \\ &\le \int_C |f_n(z) - f(z)| |dz| \\ &\le \left(\frac{\epsilon}{L}\right)(L) = \epsilon. \end{aligned}
$$

Hence lim $\lim_{n\to\infty}\int_C f_n(z)dz = \int_C f(z)dz.$

A corollary of this theorem is that if the partial sums of a series:

$$
S_n(z) = \sum_{j=1}^n g_j(z)
$$

are continuous and converge uniformly to $S(z)$ then

$$
\sum_{j=1}^{\infty} \int_C g_j(z) dz = \int_C \sum_{j=1}^{\infty} g_j(z) dz = \int_C S(z) dz.
$$

Def. A sequence of complex numbers $\{z_n\}$ is called **a Cauchy sequence** if for all $\epsilon > 0$, there exists a $N \in \mathbb{Z}^+$ such that if $m,n \geq N$ then $|z_n - z_m| < \epsilon$.

Theorem: If $\{f_n(z)\}$ is a Cauchy sequence for each $z\in D, \; D$ a region in $\mathbb C,$ then there is a function $f(z)$ such that $\{f_n(z)\}$ converges to $f(z).$

The above theorem follows from the fact that every Cauchy sequence of real numbers converges in ℝ, and the following:

$$
f_n(z) = u_n(x, y) + iv_n(x, y)
$$

$$
|u_n(x, y) - u_m(x, y)| \le |f_n(z) - f_m(z)| < \epsilon
$$

$$
|v_n(x, y) - v_m(x, y)| \le |f_n(z) - f_m(z)| < \epsilon.
$$

This says that if $\{f_n(z)\}$ is a Cauchy sequence then so are $\{u_n(x,y)\}$ and $\{v_n(x,y)\}.$ Hence $\{u_n(x,y)\}$ converges to $u(x,y)$ and $\{v_n(x,y)\}$ converges to $v(x, y)$.

Thus $\{f_n(z)\}$ converges to $f(z) = u(x, y) + iv(x, y)$.

The next theorem gives us a powerful tool to prove that a series of functions converges uniformly in a region $D \subseteq \mathbb{C}$

Theorem (Weierstrass M test): Let $\bigl|g_j(z)\bigr| \leq M_j$ in a region $D \subseteq \mathbb{C}$, with $M_j \in \mathbb{R}$ constants. If $\sum_{j=1}^{\infty} M_j$ $\sum_{j=1}^{\infty} M_j$ converges, then the series $S(z) = \sum_{j=1}^{\infty} g_j(z)$ $j=1$ converges uniformly in D .

Proof: Let $n > m$ and $S_n(z) = \sum_{j=1}^n g_j(z)$ $_{j=1}^{n}$ $g_{j}(z).$ Then

$$
|S_n(z) - S_m(z)| = |\sum_{j=m+1}^n g_j(z)|
$$

\n
$$
\leq \sum_{j=m+1}^n |g_j(z)|
$$

\n
$$
\leq \sum_{j=m+1}^n M_j \leq \sum_{j=m+1}^\infty M_j
$$

Since $\sum_{j=1}^\infty M_j$ $\sum\limits_{j=1}^\infty M_j$ converges we know there's an $N\in \mathbb{Z}^+$ such that if $m \geq N, \sum_{j=m+1}^{\infty} M_j < \epsilon.$

Thus $\{S_n(z)\}$ converges uniformly to $S(z)$ in $D.$

Ex. Prove that
$$
\sum_{n=1}^{\infty} \frac{z^n}{n\sqrt{n+1}}
$$
 converges uniformly for $|z| \leq 1$.

For
$$
|z| \le 1
$$
 we have: $\left| \frac{z^n}{n\sqrt{n+1}} \right| \le \left| \frac{1}{n\sqrt{n+1}} \right| \le \left| \frac{1}{n^{\frac{3}{2}}} \right| = \frac{1}{n^{\frac{3}{2}}}$.
\nNotice that $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges because it's a *p*-series with $p = \frac{3}{2} > 1$.
\nSo if we let $M_j = \frac{1}{j^{\frac{3}{2}}}$ then we have:
\n $|g_j(z)| \le M_j$ (here $g_j(z) = \frac{z^j}{j\sqrt{j+1}}$) and $\sum_{j=1}^{\infty} M_j$ converges.

So by the Weierstrass M test $\sum_{n=1}^{\infty} \frac{z^n}{\sqrt{n}}$ $n\sqrt{n+1}$ ∞ $\sum_{n=1}^{\infty} \frac{z}{n \sqrt{n+1}}$ converges uniformly for $|z| \leq 1$.

Ex. Show
$$
\sum_{n=1}^{\infty} ze^{-nz}
$$
 converges uniformly on $1 \leq |z| \leq 4$ and $Re(z) \geq 3$.

$$
|ze^{-nz}| = |z||e^{-nz}| \le 4|e^{-nz}|
$$
 because $|z| \le 4$.

$$
z = x + iy \text{ thus:}
$$

$$
4|e^{-nz}| = 4|e^{-n(x+iy)}| = 4|e^{-nx}e^{-nyi}| = 4|e^{-nx}|;
$$

$$
x = Re(z) \ge 3; \text{ so}
$$

$$
|ze^{-nz}| \le 4|e^{-nz}| = 4|e^{-nx}| \le 4e^{-3n}
$$

Thus we have:

$$
\sum_{n=1}^{\infty} 4e^{-3n} = 4[e^{-3} + e^{-6} + e^{-9} + \dots] = 4(\frac{e^{-3}}{1 - e^{-3}})
$$

(Geometric series).

So if we let $M_j = 4e^{-3j}$, then $\bigl| g_j(z) \bigr| \leq M_j \; \;$ (here $g_j(z) = z e^{-jz}$) and $\sum_{j=1}^{\infty} M_j$ $\stackrel{\infty}{j=1}M_j$ converges.

Thus the series $\sum_{n=1}^{\infty} ze^{-nx}$ $\sum_{n=1}^{\infty}$ z e^{-nx} converges uniformly on $1 \leq |z| \leq 4$ and $Re(z) \geq 3$ by the Weierstrass M test.

Ex. Show that the Riemann Zeta function $\zeta(z) = \sum_{n=1}^\infty n^{-z}$ $\sum_{n=1}^{\infty} n^{-z}$, converges uniformly for $Re(z) \geq 1 + \alpha$, for any $\alpha > 0$.

Let $z = x + iy$, then we have:

$$
|n^{-z}| = |e^{-zlogn}|
$$

= $|e^{-(x+iy)logn}|$
= $|e^{-xlogn}| |e^{-iylogn}|$; $(|e^{iA}| = 1, A \in \mathbb{R})$
= $|e^{-xlogn}|$
= $|n^{-x}|$
= $\frac{1}{n^x} \le \frac{1}{n^{1+\alpha}} = M_n$.

 $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n^{1+1}}$ $n^{1+\alpha}$ ∞ $\sum_{n=1}^{\infty}$ which converges because it's a p-series with $p = 1 + \alpha > 1.$

Thus $\sum_{n=1}^{\infty} n^{-z}$ $\sum_{n=1}^{\infty} n^{-z}$ converges uniformly for $Re(z) \geq 1 + \alpha$, for any $\alpha > 0$ by the Weierstrass M test.

A corollary of the Weierstrass M test is the Ratio Test for a complex series.

Theorem: Suppose $|g_1(z)|$ is bounded for $z \in D \subseteq \mathbb{C}$ and

$$
\left|\frac{g_{j+1}(z)}{g_j(z)}\right| \le M < 1, \quad j > 1
$$

Then the series: $S(z) = \sum_{j=1}^{\infty} g_j(z)$ $\bigcup_{j=1}^{\infty} g_j(z)$ is uniformly convergent in D .

Proof: We can write: $g_n(z) = g_1(z) \left(\frac{g_2(z)}{g_1(z)} \right)$ $g_1(z)$ $\left(\frac{g_3(z)}{g_3(z)}\right)$ $\frac{g_3(z)}{g_2(z)}\bigg) ... \big(\frac{g_n(z)}{g_{n-1}(z)}\big)$ $\frac{y_n(z)}{g_{n-1}(z)}$. Since $|g_1(z)|$ is bounded we can say: $|g_1(z)| \leq K$.

Since
$$
\left| \frac{g_{j+1}(z)}{g_j(z)} \right| \le M < 1
$$
, $j > 1$ we have
 $|g_n(z)| \le KM^{n-1}$.

Thus $\sum_{j=1}^{\infty} |g_j(z)| \leq K \sum_{j=1}^{\infty} M^{j-1}$ $\sum_{j=1}^{\infty} |g_j(z)| \leq K \sum_{j=1}^{\infty} M^{j-1} = \frac{K}{1-\frac{1}{K}}$ $\frac{1}{1-M}$ (geometric series).

So by the Weierstrass M test $\sum_{j=1}^{\infty} g_j(z)$ $\int\limits_{j=1}^{\infty}g_j(z)$ converges uniformly to $S(z)$ in D since

$$
|g_j(z)| \le KM^{j-1} = M_j
$$
 and $\sum_{j=1}^{\infty} M_j = \frac{K}{1-M}$ converges.

Def. The largest R for which a power series $\sum_{j=0}^{\infty} a_j z^j$ $\sum_{j=0}^{\infty}a_jz^j$ converges inside the disk $|z| < R$ is called the **radius of convergence** of the power series.

The radius of convergence of a power series can turn out to be $0, \infty$, or any positive real number.

Ex. Find the radius of convergence, R , of:

a.
$$
\sum_{n=0}^{\infty} \frac{z^n}{n!}
$$
, b. $\sum_{n=1}^{\infty} (n!) z^n$, c. $\sum_{n=1}^{\infty} \frac{n^n}{n!} z^{2n}$.

By the ratio test we need to find where: lim $n\rightarrow\infty$ $\frac{g_{n+1}(z)}{g_{n+1}(z)}$ $g_n(z)$ $|$ < 1.

- a. lim $n\rightarrow\infty$ $\frac{z^{n+1}}{\binom{n+1}{n+1}}$ $(n+1)!$ $n!$ $\left| \frac{n}{z^{n}} \right| = \lim_{n \to \infty}$ $n\rightarrow\infty$ $\frac{Z}{m}$ $\left| \frac{z}{n+1} \right| = 0 < 1$ for all $z \in \mathbb{C}$. Thus $R = \infty$.
- b. lim $n\rightarrow\infty$ $\frac{|(n+1)!z^{n+1}}{(a!)z^n}$ $\left| \frac{(-1)^{n}}{(n!)z^n} \right| = \lim_{n \to \infty}$ $n\rightarrow\infty$ $|(n + 1)z| = \infty$ unless $z = 0$. Thus $R = 0$.

c.
$$
\lim_{n \to \infty} \left| \frac{(n+1)^{n+1}}{(n+1)!} z^{2(n+1)} \frac{n!}{n^2 z^{2n}} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^{n+1}}{n^n} \frac{1}{n+1} z^2 \right|
$$

$$
= \lim_{n \to \infty} \left| \frac{(n+1)^n}{n^n} z^2 \right|
$$

$$
= \lim_{n \to \infty} \left| \frac{n+1}{n} \right|^n z^2
$$

$$
= \lim_{n \to \infty} \left| (1 + \frac{1}{n})^n z^2 \right|
$$

$$
= e|z^2| < 1
$$

$$
|z|^2 < \frac{1}{e}
$$

$$
|z| < \frac{1}{\sqrt{e}}
$$