1. Let $g: [0,1] \times [0,1] \to \mathbb{R}$ by g(x,y) = 1 if $0 \le x < \frac{1}{2}$ = 0 if $\frac{1}{2} \le x \le 1$. Show that g is integrable and $\int_{[0,1] \times [0,1]} g = \frac{1}{2}$.

2. Let $f, g: B \subseteq \mathbb{R} \to \mathbb{R}$ be integrable. Assuming that $f(x) \leq g(x)$ for all $x \in B$ show that $\int_B f \leq \int_B g$.

3. Suppose
$$f:[0,1] \to \mathbb{R}$$
, by

$$f(x) = 1 \quad \text{if} \quad x = \frac{1}{2}$$
$$= 0 \quad \text{if} \quad x \neq \frac{1}{2}$$

Prove that

- i. *f* is integrable
- ii. $\int_{[0,1]} f = 0.$

4. Find an example of a function $f: [0,1] \to \mathbb{R}$ such that f is not integrable, but f^2 is integrable.