Surfaces

Two common ways to represent surfaces in \mathbb{R}^3 are:

- 1) f(x, y, z) = 0; $x^2 + y^2 + z^2 1 = 0$ is the unit sphere
- 2) Parametrically: $\overrightarrow{\Phi}$: $U \subseteq \mathbb{R}^2 \to \mathbb{R}^3$

 $\vec{\Phi}(u,v) = (x(u,v), y(u,v), z(u,v))$

e.g. $\vec{\Phi}(u, v) = (\cos v \sin u \, , \sin v \sin u \, , \cos u)$

where $0 \leq u \leq \pi$, $0 \leq v \leq 2\pi~$ is also a representation of the unit sphere.

If $\vec{\Phi}$ is C^1 (i.e. x(u, v), y(u, v), and z(u, v) have continuous partial derivatives), then $S = \vec{\Phi}(U)$ is called a C^1 surface.

Def. A **tangent vector** to a surface, $S \subseteq \mathbb{R}^3$, at a point, $p \in S$, is the velocity vector at p of a curve in S passing through p. The **tangent space**, in this case a tangent plane, of S at p is the set of all tangent vectors to S at p. We denote this by T_pS .

If $\gamma(t) = (u(t), v(t))$ is a smooth regular curve (i.e. $\gamma'(t) \neq (0, 0)$ at any point), then $\vec{\Phi}(u(t), v(t))$ is a smooth curve on S if $\vec{\Phi}$ is smooth.

By the chain rule:

$$\frac{d}{dt}\vec{\Phi}(u(t),v(t)) = \vec{\Phi}_u\left(\frac{du}{dt}\right) + \vec{\Phi}_v\left(\frac{dv}{dt}\right)$$

where:

$$\overrightarrow{\Phi}_{u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right); \qquad \overrightarrow{\Phi}_{v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right).$$

 $\frac{d}{dt}\vec{\Phi}(u(t_0), v(t_0)) \text{ is a tangent vector to } S \text{ at } p = \vec{\Phi}(u(t_0), v(t_0)).$

In fact if we take u(t) = t, v(t) = 0, we see that $\overrightarrow{\Phi}_u$ is a tangent vector to S at p. Similarly, if we take u(t) = 0, v(t) = t, we see $\overrightarrow{\Phi}_v$ is a tangent vector to S at p.

Def. $S = \vec{\Phi}(u, v)$ is called a **regular surface** at $\vec{\Phi}(u_0, v_0)$ if: $\vec{\Phi}_u(u_0, v_0) \times \vec{\Phi}_v(u_0, v_0) \neq \vec{0}$

The surface is called regular if it is regular at every point.

Notice that $\overrightarrow{\Phi}_u \times \overrightarrow{\Phi}_v \neq \overrightarrow{0}$ means that $\overrightarrow{\Phi}_u$ and $\overrightarrow{\Phi}_v$ are a basis for the tangent space of S at p, because $\overrightarrow{\Phi}_u$ and $\overrightarrow{\Phi}_v$ are linearly independent so they must span the tangent plane at p.

Ex. Let $\vec{\Phi}(u, v) = (\cos v \sin u, \sin v \sin u, \cos u)$ be a parameterization of the unit sphere. Find an equation for the tangent plane at $u = \frac{\pi}{4}$, $v = \frac{\pi}{3}$.

$$\vec{\Phi}_u(u,v) = (\cos v \cos u, \sin v \cos u, -\sin u)$$

$$\vec{\Phi}_u\left(\frac{\pi}{4}, \frac{\pi}{3}\right) = \left(\left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right), -\frac{\sqrt{2}}{2}\right) = \left(\frac{\sqrt{2}}{4}, \frac{\sqrt{6}}{4}, -\frac{\sqrt{2}}{2}\right)$$

$$\vec{\Phi}_v(u,v) = (-\sin v \sin u, \cos v \sin u, 0)$$

$$\vec{\Phi}_v\left(\frac{\pi}{4}, \frac{\pi}{3}\right) = \left(\left(-\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right), \frac{1}{2}\left(\frac{\sqrt{2}}{2}\right), 0\right) = \left(-\frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}, 0\right)$$

So $\left(\frac{\sqrt{2}}{4}, \frac{\sqrt{6}}{4}, -\frac{\sqrt{2}}{2}\right)$, $\left(-\frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}, 0\right)$ span the tangent space and their cross product is a normal vector to the tangent plane.

$$\left(\frac{\sqrt{2}}{4}, \frac{\sqrt{6}}{4}, -\frac{\sqrt{2}}{2}\right) \times \left(-\frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}, 0\right) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\sqrt{2}}{4} & \frac{\sqrt{6}}{4} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{6}}{4} & \frac{\sqrt{2}}{4} & 0 \end{vmatrix} = \frac{1}{4}\vec{i} + \frac{\sqrt{3}}{4}\vec{j} + \frac{1}{2}\vec{k}.$$

The point, p, on the sphere is :

 $\overrightarrow{\Phi}\left(\frac{\pi}{4},\frac{\pi}{3}\right) = \left(\frac{\sqrt{2}}{4},\frac{\sqrt{6}}{4},\frac{\sqrt{2}}{2}\right)$

Eq. of the tangent plane: $\frac{1}{4}\left(x - \frac{\sqrt{2}}{4}\right) + \frac{\sqrt{3}}{4}\left(y - \frac{\sqrt{6}}{4}\right) + \frac{1}{2}\left(z - \frac{\sqrt{2}}{2}\right) = 0.$

We were able to find this equation easily by using the cross product, which doesn't exist in higher dimensions. However, since $\vec{\Phi}_u\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$ and $\vec{\Phi}_v\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$ span the tangent plane, we could have said:

$$T_p S = \left\{ \left(\frac{\sqrt{2}}{4}, \frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{2}\right) + a \overrightarrow{\Phi}_u \left(\frac{\pi}{4}, \frac{\pi}{3}\right) + b \overrightarrow{\Phi}_v \left(\frac{\pi}{4}, \frac{\pi}{3}\right) \middle| (a, b) \in \mathbb{R}^2 \right\}$$

We could express this tangent plane in another way. Notice that:

$$D\vec{\Phi} = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix} = (\vec{\Phi}_u \ \vec{\Phi}_v).$$

Since $\overrightarrow{\Phi}: U \subseteq \mathbb{R}^2 \to \mathbb{R}^3$, then $D\overrightarrow{\Phi}\left(\frac{\pi}{4}, \frac{\pi}{3}\right): \mathbb{R}^2 \to \mathbb{R}^3$ and: $\left(D\overrightarrow{\Phi}\left(\frac{\pi}{4}, \frac{\pi}{3}\right)\right) \binom{a}{b} = a\overrightarrow{\Phi}_u\left(\frac{\pi}{4}, \frac{\pi}{3}\right) + b\overrightarrow{\Phi}_v\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$ for any $(a, b) \in \mathbb{R}^2$.

Thus the tangent plane at $\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$ is just the image of \mathbb{R}^2 under $D\overrightarrow{\Phi}\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$: $T_pS = \left(D\overrightarrow{\Phi}\left(\frac{\pi}{4}, \frac{\pi}{3}\right)\right)(\mathbb{R}^2)$ translated to the point $\overrightarrow{\Phi}\left(\frac{\pi}{4}, \frac{\pi}{3}\right) = \left(\frac{\sqrt{2}}{4}, \frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{2}\right)$.

So if
$$\overrightarrow{\Phi}$$
: $U \subseteq \mathbb{R}^2 \to S \subseteq \mathbb{R}^3$, then $D\overrightarrow{\Phi}(u_0, v_0)$: $T_{(u_0, v_0)}U \to T_pS$.

We can represent a smooth surface in \mathbb{R}^n as the image of a smooth map $\overrightarrow{\Phi}$: $\overrightarrow{\Phi}: U \subseteq \mathbb{R}^2 \to S \subseteq \mathbb{R}^n$. We will still have: $D\overrightarrow{\Phi}(u_0, v_0): T_{(u_0, v_0)}U \to T_pS$. Ex. Let T^2 be the torus in \mathbb{R}^4 parameterized by:

 $\vec{\Phi}(u,v) = (\cos u, \sin u, \cos v, \sin v)$ Find the tangent space of T^2 at $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ in \mathbb{R}^4 .

$$D\vec{\Phi} = \begin{pmatrix} -\sin u & 0\\ \cos u & 0\\ 0 & -\sin v\\ 0 & \cos v \end{pmatrix}.$$

At $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ we have:

$$D\overrightarrow{\Phi}\left(\frac{\pi}{4},\frac{\pi}{2}\right) = \begin{pmatrix} -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & 0\\ 0 & -1\\ 0 & 0 \end{pmatrix} = \left(\overrightarrow{\Phi}_{u}\left(\frac{\pi}{4},\frac{\pi}{3}\right) \quad \overrightarrow{\Phi}_{v}\left(\frac{\pi}{4},\frac{\pi}{3}\right)\right).$$

We could choose a basis for \mathbb{R}^2 by taking (1,0) and (0,1) and then take the image of the vectors under $D\overrightarrow{\Phi}\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ to get $\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0,0\right)$ and (0,0,-1,0). Or you can just take $\overrightarrow{\Phi}_u\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ and $\overrightarrow{\Phi}_v\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ which are the same vectors.

Thus, $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0, 0\right)$ and (0, 0, -1, 0) span the tangent space to T^2 at $\overrightarrow{\Phi}\left(\frac{\pi}{4}, \frac{\pi}{2}\right) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0, 1\right)$ and we have:

$$T_{\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0,1\right)}(T^{2}) = \left\{ \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0,1\right) + a\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0,0\right) + b(0,0,-1,0) \right| (a,b) \in \mathbb{R}^{2} \right\}$$