The Inverse Function Theorem and The Implicit Function Theorem-HW Problems

1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ and f'(x) is continuous. Show that if $f'(x) \neq 0$ for all x then f is one-to-one on \mathbb{R} .

2. Let $g(x, y) = (e^x \cos y, e^x \sin y)$. Show that $det(Dg(x, y)) \neq 0$ for all $(x, y) \in \mathbb{R}^2$ but g(x, y) is not one-to-one on \mathbb{R}^2 .

3. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$, where $f(s,t) = (s^3 - 3st^2, 3s^2t - t^3)$. Let q = (2,3). Prove there exists a neighborhood, V, of q and a neighborhood, W, of f(q) such that f has a continuously differentiable inverse. Find $Df^{-1}(-46,9)$.

- 4. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, by $f(x, y) = (x^2 e^y, xy)$.
 - a. Find Df(2,0). b. Find $Df^{-1}(f(2,0))$.