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Differentiation and Directional Derivatives 
 

If 𝑓: ℝ → ℝ, we say that 𝑓 is differentiable at 𝑎 ∈ ℝ if 
 

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
= 𝑓′(𝑎) 

 
This definition doesn’t make any sense for a function 𝑓: ℝ𝑛 → ℝ𝑚 (in that case, 
ℎ ∈ ℝ𝑛 and dividing by a vector is not defined).  
 

However, we can think of any number, 𝑓′(𝑎), as defining a linear transformation 

𝜆 of ℝ into ℝ by: 
 

𝜆:ℝ → ℝ  

                                                         𝜆(ℎ) = (𝑓′(𝑎))ℎ. 

 
So we could reformulate our definition of the derivative, 𝑓′(𝑎), by saying: 

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝑓′(𝑎)ℎ

ℎ
= 0 

Or 

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)

ℎ
= 0 

 
 
Thus, we say a function 𝑓: ℝ → ℝ is differentiable at 𝑎 ∈ ℝ if there is a linear 

transformation 𝜆:ℝ → ℝ such that: 
 

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)

ℎ
= 0 

 
Note: Any linear transformation, 𝜆, of ℝ into ℝ, 𝜆:ℝ → ℝ, is just 

 multiplication by a fixed number; 𝜆(ℎ) = 𝑝ℎ;  𝑝 ∈ ℝ. 
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Now we can generalize this definition to: 𝑓:ℝ𝑛 → ℝ𝑚. 
 
Def.  A function 𝑓:ℝ𝑛 → ℝ𝑚 is differentiable at 𝑎 ∈ ℝ𝑛 if there is a linear 

transformation, 𝜆:ℝ𝑛 → ℝ𝑚, such that: 
 

lim
ℎ→0

|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)|

|ℎ|
= 0. 

 

 

Notice that (𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)) ∈ ℝ𝑚 and ℎ ∈ ℝ𝑛. 
 

If this limit is 0, then we say: 𝐷𝑓(𝑎) = 𝜆. 
 
 

Theorem: If 𝑓:ℝ𝑛 → ℝ𝑚 is differentiable at 𝑎 ∈ ℝ𝑛, then there is a   

 unique linear transformation, 𝜆:ℝ𝑛 → ℝ𝑚, such that:   

            

lim
ℎ→0

|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)|

|ℎ|
= 0. 

 
Proof:  Suppose 𝜏: ℝ𝑛 → ℝ𝑚 is a linear transformation that also satisfies   

                    

lim
ℎ→0

|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜏(ℎ)|

|ℎ|
= 0. 

                                           
Then we have: 

   0 ≤ lim
           ℎ→0

|𝜆(ℎ) − 𝜏(ℎ)|

|ℎ|
 

 

 

= lim
ℎ→0

|(𝜆(ℎ) − 𝑓(𝑎 + ℎ) + 𝑓(𝑎)) + (𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜏(ℎ))|

|ℎ|
 

 
 
 

≤ lim
ℎ→0

|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)|

|ℎ|
+ lim
ℎ→0

|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜏(ℎ)|

|ℎ|
 

       

              = 0 + 0 = 0.                     ⇒ 𝜆(ℎ) = 𝜏(ℎ). 
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Ex.  Let 𝑓:ℝ2 → ℝ2 by 𝑓(𝑥, 𝑦) = (𝑥𝑦, 𝑥 + 2𝑦). Using the definition of  the 

        derivative, show that: 

                                        𝐷𝑓(0, 0) = (
0 0
1 2

). 

 
 

We must show that lim
ℎ→0

|𝑓(0⃗⃗ +ℎ)−𝑓(0⃗⃗ )−𝜆(ℎ)|

|ℎ|
= 0,  where 𝜆 = (

0 0
1 2

).      

If we let ℎ = (ℎ1, ℎ2) then: 
 

lim
ℎ→0

|𝑓(0⃗ + ℎ) − 𝑓(0⃗ ) − 𝜆(ℎ)|

|ℎ|
= lim
ℎ→0

|(ℎ1ℎ2, ℎ1 + 2ℎ2) − (
0 0
1 2

) (
ℎ1
ℎ2
)|

|ℎ|
 

 

= lim
ℎ→0

|(ℎ1ℎ2, ℎ1 + 2ℎ2) − (0, ℎ1 + 2ℎ2)|

|ℎ|
= lim
ℎ→0

|ℎ1ℎ2|

√ℎ1
2 + ℎ2

2
 

 

Notice that (ℎ1 + ℎ2)
2 = ℎ1

2 + 2ℎ1ℎ2 + ℎ2
2 ≥ 0 

           ℎ1
2 + ℎ2

2 ≥ −2ℎ1ℎ2 

                               
ℎ1
2+ℎ2

2

2
≥ |ℎ1ℎ2| . 

So: 

0 ≤ lim
ℎ→0

|ℎ1ℎ2|

√ℎ1
2+ℎ2

2
≤ lim
ℎ→0

ℎ1
2+ℎ2

2

2

√ℎ1
2+ℎ2

2
= lim
ℎ→0

1

2
√ℎ1

2 + ℎ2
2 = 0  

 

 

Thus        lim
ℎ→0

|𝑓(0⃗⃗ +ℎ)−𝑓(0⃗⃗ )−𝜆(ℎ)|

|ℎ|
= 0 and:  

 

𝐷𝑓(0, 0) = (
0 0
1 2

). 
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Ex.  Let 𝑓:ℝ2 → ℝ by: 

𝑓(𝑥, 𝑦) =  
𝑥𝑦

√𝑥2 + 𝑦2
   ;   (𝑥, 𝑦) ≠ (0,0) 

 

                                            = 0                     ;  (𝑥, 𝑦) = (0,0). 
 
      Show 𝑓 is not differentiable at (0, 0). 

 

       Let’s assume 𝑓 is differentiable at (0, 0) and derive a contradiction.    
 

        If 𝑓 is differentiable at (0, 0), then there is a linear transformation:      

       𝜆: ℝ2 → ℝ such that: 

                                   lim
ℎ→0

|𝑓(0⃗⃗ +ℎ)−𝑓(0⃗⃗ )−𝜆(ℎ)|

|ℎ|
= 0 

 
 

where ℎ = (ℎ1, ℎ2). 
 
        Let 𝜆 = (𝑎11  𝑎12) so if (𝑥, 𝑦) ∈ ℝ2, then: 
 
 
 

         𝜆(𝑥, 𝑦) = (𝑎11  𝑎12) (
𝑥
𝑦) = 𝑎11𝑥 + 𝑎12𝑦,     and 

 
 

                                 lim
ℎ→0

|
ℎ1 ℎ2

√ℎ1
2+ℎ2

2
−(𝑎11ℎ1+𝑎12ℎ2)|

√ℎ1
2+ℎ2

2
= 0. 

 
 
 

For this limit to exist we must get the same value, 0, no matter which 

direction ℎ approaches (0, 0). 
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Suppose ℎ = (ℎ1, 0); i.e. we approach (0, 0) along the 𝑥-axis. 

 

lim
ℎ1→0

|−𝑎11ℎ1|

√ℎ1
2

= lim
ℎ1→0

|𝑎11||ℎ1|

|ℎ1|
= |𝑎11| = 0 

 

so 𝑎11 = 0.  

 
 

 
Now approach (0, 0) along the 𝑦-axis, i.e. ℎ1 = 0. 
 
 

lim
ℎ2→0

|−𝑎12ℎ2|

√ℎ2
2

= lim
ℎ2→0

|𝑎12||ℎ2|

|ℎ2|
= |𝑎12| = 0 

so 𝑎12 = 0.   

 
 
 

Thus, 𝜆 = (𝑎11   𝑎12) = (0   0) maps all vectors in ℝ2 to 0. 
 
Knowing 𝜆 = (0   0), let’s approach (0, 0) by  
ℎ = (ℎ1, ℎ1), i.e. ℎ2 = ℎ1. 

 
 

lim
ℎ1→0

|
ℎ1
2 

√ℎ1
2 + ℎ1

2
− 0|

√ℎ1
2 + ℎ1

2
= lim
ℎ1→0

ℎ1
2

(ℎ1
2 + ℎ2

2)
= lim
ℎ1→0

ℎ1
2

2ℎ1
2 =

1

2
 . 

 

 
 
But then: 

lim
ℎ→0

|𝑓(0⃗ + ℎ) − 𝑓(0⃗ ) − 𝜆(ℎ)|

|ℎ|
≠ 0 

 
thus, 𝑓(𝑥, 𝑦) does not have a derivative at (0, 0). 
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Ex.  Let 𝑓:ℝ2 → ℝ by:  

𝑓(𝑥, 𝑦) =
𝑥2𝑦4

𝑥4+6𝑦8
          (𝑥, 𝑦) ≠ (0,0)  

                                               = 0                    (𝑥, 𝑦) = (0,0)  
 

Show that 𝑓(𝑥, 𝑦) is not differentiable at (0, 0).   

 

 
 

Let’s assume 𝑓(𝑥, 𝑦) is differentiable at (0, 0) and derive a contradiction.  
 
If 𝑓 is differentiable at (0, 0), then there is a linear transformation, 
𝜆:ℝ2 → ℝ, where: 

 

𝜆(𝑥, 𝑦) = (𝑎11 𝑎12) (
𝑥
𝑦) = 𝑎11𝑥 + 𝑎12𝑦 

  and 

 

                                 lim
ℎ→0

|𝑓(0⃗⃗ +ℎ)−𝑓(0⃗⃗ )−𝜆(ℎ)|

|ℎ|
= 0. 

 
 
            If we let ℎ = (ℎ1, ℎ2) then: 
 

lim
ℎ→0

|
ℎ1
2ℎ2
4

ℎ1
4 + 6ℎ2

8 − (𝑎11ℎ1 + 𝑎12ℎ2)|

√ℎ1
2 + ℎ2

2
= 0. 

 
For this limit to exist, we must get the same value, 0, when approaching (0, 0) 
from any direction. In particular, suppose ℎ = (ℎ1, 0) (i.e. we approach (0, 0) 
along the 𝑥-axis). 
 

lim
ℎ1→0

|−𝑎11ℎ1|

√ℎ1
2

= 0     ⇒    𝑎11 = 0. 
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Now approach (0, 0) along the 𝑦-axis (i.e. ℎ1 = 0): 
 

lim
ℎ2→0

|−𝑎12ℎ2|

√ℎ2
2

= 0     ⇒    𝑎12 = 0 

 
 

Thus, 𝜆 = (𝑎11    𝑎12) = (0      0).  
 
 

Knowing 𝜆 = (0    0), let’s approach (0, 0) by ℎ1 = ℎ2
2   (i.e. ℎ = (ℎ2

2, ℎ2)). 
 
 

lim
ℎ→0

|𝑓(0⃗ + ℎ) − 𝑓(0⃗ ) − 𝜆(ℎ)|

|ℎ|
= lim
ℎ2→0

ℎ2
4ℎ2
4

(ℎ2
8 + 6ℎ2

8)√ℎ2
4 + ℎ2

2

 

                                                                      = lim
ℎ2→0

ℎ2
8

(7ℎ2
8)√ℎ2

4+ℎ2
2
 

                                                                    = lim
ℎ2→0

1

(7)√ℎ2
4+ℎ2

2
≠ 0. 

 
Thus: 

lim
ℎ→0

|𝑓(0⃗ + ℎ) − 𝑓(0⃗ ) − 𝜆(ℎ)|

|ℎ|
≠ 0 

 

 

and 𝐷𝑓(0, 0) does not exist. 
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           Theorem: If  𝑓: ℝ𝑛 → ℝ𝑚 is differentiable at 𝑎 ∈ ℝ𝑛, then it’s 

 continuous at 𝑎 ∈ ℝ𝑛.   

 
 
 

 Proof:  To show 𝑓 is continuous at 𝑎 ∈ ℝ𝑛 we need to show: 
 

lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎)  or equivalently  lim
ℎ→0
(𝑓(𝑎 + ℎ) − 𝑓(𝑎)) = 0.  

 
 

 We need to use the fact that 𝐷𝑓(𝑎) exists: 
 

lim
ℎ→0

|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)|

|ℎ|
= 0 

 for some linear transformation 𝜆:ℝ𝑛 → ℝ𝑚. 
 
         Notice that:  

 

0 ≤ |𝑓(𝑎 + ℎ) − 𝑓(𝑎)| = |𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ) + 𝜆(ℎ)| 
 

≤ |𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)| + |𝜆(ℎ)| 
 
 

                               =
|𝑓(𝑎+ℎ)−𝑓(𝑎)−𝜆(ℎ)|

|ℎ|
 ∙  |ℎ| + |𝜆(ℎ)|.       

 
 

 For any linear transformation 𝑇:ℝ𝑛 → ℝ𝑚, we know there is a 𝑀 ∈ ℝ   
          such that: 

|𝑇(ℎ)| ≤ 𝑀|(ℎ)|. 
Thus: 

0 ≤ |𝑓(𝑎 + ℎ) − 𝑓(𝑎)| ≤
|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)|

|ℎ|
 |ℎ| + 𝑀|ℎ|. 

 

 Letting ℎ → 0 we know the RHS becomes 0 (why?). 
Thus by the squeeze theorem: 
 

                                         lim
ℎ→0
|𝑓(𝑎 + ℎ) − 𝑓(𝑎)| = 0. 

 Hence: 

  lim
ℎ→0
(𝑓(𝑎 + ℎ) − 𝑓(𝑎)) = 0 

                                                           lim
ℎ→0

𝑓(𝑎 + ℎ) = 𝑓(𝑎). 
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Differentiation Theorems:  

 

The Chain Rule:  If 𝑓: ℝ𝑛 → ℝ𝑚 is differentiable at 𝑎, and 𝑔:ℝ𝑚 → ℝ𝑝 

                               is differentiable at 𝑓(𝑎), then 𝑔 ∘ 𝑓: ℝ𝑛 → ℝ𝑝 is 

                               differentiable at 𝑎, and: 

𝐷(𝑔 ∘ 𝑓)(𝑎) = 𝐷𝑔(𝑓(𝑎)) ∘ 𝐷𝑓(𝑎). 

 

1) If 𝑓: ℝ𝑛 → ℝ𝑚 is a constant function, then    

 𝐷𝑓(𝑎) = 0 

 

2) If 𝑓: ℝ𝑛 → ℝ𝑚 is a linear transformation, then              

 𝐷𝑓(𝑎) = 𝑓 

 

3) If 𝑓: ℝ𝑛 → ℝ𝑚, then 𝑓 is differentiable at 𝑎 ∈ ℝ𝑛 if, and only if, 𝑓𝑖 is 

differentiable and 𝐷𝑓(𝑎) = (𝐷𝑓1(𝑎),… , 𝐷𝑓𝑚(𝑎)). Thus, 𝐷𝑓(𝑎) is 

the 𝑚 ×  𝑛 matrix whose 𝑖𝑡ℎ row is 𝐷𝑓𝑖(𝑎) 

 

4) If 𝑔:ℝ2 → ℝ is defined by 𝑔(𝑥, 𝑦) = 𝑥 + 𝑦, then  

 𝐷𝑔(𝑎, 𝑏) = 𝑔 

 

5) If 𝑚:ℝ2 → ℝ is defined by 𝑚(𝑥, 𝑦) = 𝑥𝑦, then  

(𝐷𝑚(𝑎, 𝑏))(𝑥, 𝑦) = 𝑏𝑥 + 𝑎𝑦, thus 𝐷𝑚(𝑎, 𝑏) = (𝑏   𝑎). 
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Proof:  

1. 

lim
ℎ→0

|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 0|

|ℎ|
= 0 

 

 

2. 

lim
ℎ→0

|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝑓(ℎ)|

|ℎ|
= lim
ℎ→0

|𝑓(𝑎) + 𝑓(ℎ) − 𝑓(𝑎) − 𝑓(ℎ)|

|ℎ|
= 0 

 

 

 

 

3. If 𝑓𝑖 is differentiable at 𝑎 and 𝜆 = (𝐷𝑓1(𝑎),… , 𝐷𝑓𝑚(𝑎)), then: 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ) 

   = (𝑓1(𝑎 + ℎ) − 𝑓1(𝑎) − 𝐷𝑓1(𝑎)(ℎ),… , 𝑓𝑚(𝑎 + ℎ) − 𝑓𝑚(𝑎) − 𝐷𝑓𝑚(𝑎)(ℎ))  
 

So, 

lim
ℎ→0

|𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜆(ℎ)|

|ℎ|
≤ lim
ℎ→0

∑
|𝑓𝑖(𝑎 + ℎ) − 𝑓𝑖(𝑎) − 𝐷𝑓𝑖(𝑎)(ℎ)|

|ℎ|

𝑚

𝑖=1

= 0. 

 

Thus 𝑓 is differentiable at 𝑎 and 𝐷𝑓(𝑎) = 𝜆. 

 

If 𝑓 is differentiable at 𝑎, then by #2 and the chain rule, 𝑓𝑖 = 𝜋𝑖 ∘ 𝑓 is 

differentiable at 𝑎 where 𝜋𝑖(𝑥) = 𝑥𝑖, and  

                       𝐷𝑓𝑖(𝑎) = 𝐷𝜋𝑖(𝑓(𝑎)) ∘ 𝐷𝑓(𝑎) 

                                     = 𝜋𝑖 ∘ 𝐷𝑓(𝑎) 

Thus 𝐷𝑓(𝑎) = (𝐷𝑓1(𝑎),… , 𝐷𝑓𝑚(𝑎)). 
 

 

 

4.  Since 𝑔(𝑥, 𝑦) = 𝑥 + 𝑦 is a linear transformation from ℝ2 → ℝ,  it follows 

from #2 that 𝐷𝑔(𝑎, 𝑏) = 𝑔.   
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5.  Let 𝜆(𝑥, 𝑦) = 𝑏𝑥 + 𝑎𝑦, then 
 

lim
ℎ→0

|𝑚(𝑎 + ℎ1, 𝑏 + ℎ2) − 𝑚(𝑎, 𝑏) − 𝜆(ℎ1, ℎ2)|

|(ℎ1, ℎ2)|
= lim
ℎ→0

|ℎ1 ℎ2|

√ℎ1
2 + ℎ2

2
. 

 

Notice that: 

                                    |ℎ1 ℎ2| ≤ |ℎ1 |
2     if |ℎ2| ≤ |ℎ1| 

 

 |ℎ1 ℎ2| ≤ |ℎ2 |
2     if |ℎ1| ≤ |ℎ2|  

 
 

Hence:                          |ℎ1 ℎ2| ≤ |ℎ1|
2 + |ℎ2|

2. 

 

So we can write: 

0 ≤
|ℎ1 ℎ2|

√ℎ1
2 + ℎ2

2
≤
ℎ1
2 + ℎ2

2

√ℎ1
2 + ℎ2

2
= √ℎ1

2 + ℎ2
2 

 

       ⇒                  lim
ℎ→0

|ℎ1 ℎ2|

√ℎ1
2+ℎ2

2
= 0.                   

 

 

 

Corollary: If 𝑓, 𝑔: ℝ𝑛 → ℝ are differentiable at 𝑎, then 

i) 𝐷(𝑓 + 𝑔)(𝑎) = 𝐷𝑓(𝑎) + 𝐷𝑔(𝑎) 

ii) 𝐷(𝑓 ⋅ 𝑔)(𝑎) = 𝑔(𝑎)𝐷𝑓(𝑎) + 𝑓(𝑎)𝐷𝑔(𝑎) 

iii) If 𝑔(𝑎) ≠ 0, then: 

𝐷 (
𝑓
𝑔⁄ ) (𝑎) =

𝑔(𝑎)𝐷𝑓(𝑎) − 𝑓(𝑎)𝐷𝑔(𝑎)

(𝑔(𝑎))
2  
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Proof of ii: 

 

Let     𝐹:ℝ𝑛 → ℝ2 by 𝐹(𝑥) = (𝑓(𝑥), 𝑔(𝑥)) 

 𝑝:ℝ2 → ℝ    by 𝑝(𝑥1, 𝑥2) = 𝑥1 ⋅ 𝑥2 

then, 𝑓(𝑥)𝑔(𝑥) = 𝑝 ∘ 𝐹(𝑥). 
 

  𝐷(𝑓𝑔)(𝑎) = 𝐷(𝑝 ∘ 𝐹)(𝑎) 

    = 𝐷𝑝(𝐹(𝑎)) ∘ 𝐷𝐹(𝑎)                  Chain Rule 

 = 𝐷𝑝(𝑓(𝑎), 𝑔(𝑎)) ∘ 𝐷𝐹(𝑎) 

                               = (𝑔(𝑎)  𝑓(𝑎)) (
𝐷𝑓(𝑎)
𝐷𝑔(𝑎)

)              by #3, #5 

    = 𝑔(𝑎)𝐷𝑓(𝑎) + 𝑓(𝑎)𝐷𝑔(𝑎). 

 
 

 
 

In second year calculus, given a function, 𝑓:ℝ3 → ℝ, we define the directional 

derivative of 𝑓 at 𝑥 ∈ ℝ3 along a unit vector, �⃗� , as: 
 

                              𝐷�⃗⃗� 𝑓(𝑥) =
𝑑

𝑑𝑡
𝑓(𝑥 + 𝑡�⃗� )|

𝑡=0
. 

 
Furthermore, you learn that it can be calculated by 𝐷�⃗⃗� 𝑓(𝑥) = ∇f ⋅ �⃗� .  
This follows from the chain rule. If we let �⃗� = (𝑢1, 𝑢2, 𝑢3):  

 

                      
𝑑

𝑑𝑡
𝑓(𝑥 + 𝑡�⃗� ) =

𝜕𝑓

𝜕𝑥1
 
𝑑𝑥1

𝑑𝑡
+

𝜕𝑓

𝜕𝑥2
 
𝑑𝑥2

𝑑𝑡
+

𝜕𝑓

𝜕𝑥3
 
𝑑𝑥3

𝑑𝑡
 

                                              = (
𝜕𝑓

𝜕𝑥1
) (𝑢1) + (

𝜕𝑓

𝜕𝑥2
) (𝑢2) + (

𝜕𝑓

𝜕𝑥3
)(𝑢3) 

                                              = ∇f ⋅ �⃗� .  
 
This statement is true for all 𝑡, hence it’s true for 𝑡 = 0. Thus 
                                   𝐷�⃗⃗� 𝑓(𝑥) = ∇f ⋅ �⃗� . 
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The Directional Derivative represents the rate of change in the value of              
𝑧 = 𝑓(𝑥, 𝑦) in the direction of �⃗� . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can generalize this notion to define a directional derivative for a function 
𝐹:ℝ𝑛 → ℝ𝑚. 
 
 
 

Def.  Let 𝐹: 𝑈 ⊆ ℝ𝑛 → ℝ𝑚, 𝑥 ∈ 𝑈, and �⃗�  be a unit vector in ℝ𝑛. The 

 directional derivative of 𝐹 in the direction of �⃗�  at  𝑥0 ∈ 𝑈 is: 
 

                            𝐷�⃗⃗� 𝐹(𝑥) = lim
ℎ→0

𝐹(𝑥+ℎ�⃗⃗� )−𝐹(𝑥)

ℎ
 .      

 
 

Notice that 𝐷�⃗⃗� 𝐹(𝑥) is a vector in ℝ𝑚, whereas the directional derivative of a 

function, 𝑓: ℝ3 → ℝ, at a point was a number (or a vector with one component).  
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However, it is still the case that: 

𝐷�⃗⃗� 𝐹(𝑥) =
𝑑

𝑑𝑡
(𝐹(𝑥 + 𝑡�⃗� ))|

𝑡=0
. 

 
 

  We can see this by letting 𝑔(𝑡) = 𝐹(𝑥 + 𝑡�⃗� ): 
 

𝑔′(0) = lim
ℎ→0

𝑔(0 + ℎ) − 𝑔(0)

ℎ
= lim
ℎ→0

𝐹(𝑥 + ℎ�⃗� ) − 𝐹(𝑥)

ℎ
= 𝐷�⃗⃗� 𝐹(𝑥). 

 

Thus:                                𝐷�⃗⃗� 𝐹(𝑥) =
𝑑

𝑑𝑡
(𝐹(𝑥 + 𝑡�⃗� ))|

𝑡=0
. 

 
 
Ex.  Let 𝐹(𝑥, 𝑦) = (𝑥2 − 𝑦2, 2𝑥𝑦). Find the directional derivative of 𝐹 at 

  (1, 2) in the direction of �⃗� = (
1

2
, −

√3

2
). 

 

𝐹(𝑥 + 𝑡�⃗� ) = 𝐹 ((1, 2) + 𝑡 (
1

2
, −

√3

2
)) = 𝐹 (1 +

𝑡

2
, 2 −

√3

2
𝑡) 

 

                          = ((1 +
𝑡

2
)
2
 – (2 −

√3

2
𝑡)
2

, 2 (1 +
𝑡

2
) (2 −

√3

2
𝑡)) .  

 
 

             𝐷�⃗⃗� 𝐹(1, 2) =
𝑑

𝑑𝑡
 (𝐹((1, 2) + 𝑡 (

1

2
, −

√3

2
)))|

𝑡=0
  . 

 
 

      
𝑑

𝑑𝑡
(𝐹((1, 2) + 𝑡 (

1

2
, −

√3

2
)))  

= ((2 (1 +
𝑡

2
) (
1

2
) – 2 (2 −

√3

2
𝑡) (−

√3

2
)) , 2 (1 +

𝑡

2
) (−

√3

2
) + 2 (

1

2
) (2 −

√3

2
𝑡)).   

 

So at 𝑡 = 0:    
𝑑𝐹

𝑑𝑡
|
𝑡=0

= (1 + 2√3, −√3 + 2) = 𝐷�⃗⃗� (𝐹(1, 2)) . 
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There is also a similar formula to the case where 𝑓:ℝ3 → ℝ                
(i.e. 𝐷�⃗⃗� 𝑓(𝑥) = ∇f ⋅ �⃗� ) where 𝐹:ℝ𝑛 → ℝ𝑚. 
 
Notice that  

         
𝑑

𝑑𝑡
(𝐹(𝑥 + 𝑡�⃗� )) =

𝑑

𝑑𝑡
(𝐹1(𝑥 + 𝑡�⃗� ), 𝐹2(𝑥 + 𝑡�⃗� ), … , 𝐹𝑚(𝑥 + 𝑡�⃗� )  ) 

where  𝐹𝑖: ℝ
𝑛 → ℝ.   

 
 

Thus we have: 

             
𝑑

𝑑𝑡
(𝐹(𝑥 + 𝑡�⃗� )) = (∇F1 ⋅ �⃗� , ∇F2 ⋅ �⃗� , … , ∇Fm ⋅ �⃗� ).   

 
 

This is again true for all 𝑡 so it is true for 𝑡 = 0 and  
           𝐷�⃗⃗� 𝑓(𝑥) = (∇F1 ⋅ �⃗� , ∇F2 ⋅ �⃗� , … , ∇Fm ⋅ �⃗� ) . 
 
 
We will see soon that: 

               𝐷𝐹(𝑥) =

(

 

𝜕𝐹1

𝜕𝑥1
⋯

𝜕𝐹1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝐹𝑚

𝜕𝑥1
⋯

𝜕𝐹𝑚

𝜕𝑥𝑛)

  

 
Thus we have: 

             (𝐷𝐹(𝑥))(�⃗� ) =

(

 

𝜕𝐹1

𝜕𝑥1
⋯

𝜕𝐹1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝐹𝑚

𝜕𝑥1
⋯

𝜕𝐹𝑚

𝜕𝑥𝑛)

 (

𝑢1
⋮
𝑢𝑛
) 

                                
                                                                      

                                                                                          = (∇F1 ⋅ �⃗� , ∇F2 ⋅ �⃗� , … , ∇Fm ⋅ �⃗� )                                   
                                           

                                                                                              = 𝐷�⃗⃗� 𝐹(𝑥). 
 
Thus: 
 

                         𝐷�⃗⃗� 𝐹(𝑥) = (𝐷𝐹(𝑥))(�⃗� ). 
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Ex.   Let 𝐹(𝑥, 𝑦) = (𝑥2 − 𝑦2, 2𝑥𝑦),   (𝑥, 𝑦) = (1,2),  and  �⃗� = (
1

2
, −

√3

2
). 

        Find 𝐷�⃗⃗� 𝐹(1, 2). 
 

𝐷𝐹(𝑥, 𝑦) = (

𝜕𝐹1

𝜕𝑥
(𝑥, 𝑦)

𝜕𝐹1

𝜕𝑦
(𝑥, 𝑦)

𝜕𝐹2

𝜕𝑦
(𝑥, 𝑦)

𝜕𝐹2

𝜕𝑦
(𝑥, 𝑦)

)  

 Thus,  

 

                                  𝐷𝐹(𝑥, 𝑦) = (
2𝑥 −2𝑦
2𝑦 2𝑥

)  

 
 

 So at (1, 2):  

 

                                   𝐷𝐹(1, 2) = (
2 −4
4 2

) 

 
 

                                    𝐷�⃗⃗� 𝐹(1, 2) = (𝐷𝐹(1, 2)) (

1

2

−
√3

2

)        

 

                                                        = (
2 −4
4 2

)(

1

2

−
√3

2

) = (
1 + 2√3

2 − √3
) .  

 
 
 
If the derivative of a function exists then the directional derivative exists in every 

direction and  𝐷�⃗⃗� 𝐹(𝑥) = (𝐷𝐹(𝑥))(�⃗� ). 
 

However, the directional derivative might exist in every direction without the 
derivative existing.  
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Ex.  Let: 

𝑓(𝑥, 𝑦) =
𝑥𝑦2

𝑥2+𝑦4
    if (𝑥, 𝑦) ≠ (0, 0) 

              = 0           if (𝑥, 𝑦) = (0, 0) 
 

 Show the directional derivative at (0,0) exists in all directions but 
 𝐷𝑓(0, 0) does not exist.   
 
 
 

Let �⃗� = (𝑎, 𝑏) be any unit vector. 

𝐷�⃗⃗� 𝑓(0, 0) = lim
ℎ→0

𝑓(0⃗ + ℎ�⃗� ) − 𝑓(0⃗ )

ℎ
= lim
ℎ→0

ℎ3𝑎𝑏2

ℎ(ℎ2𝑎2 + ℎ4𝑏4)
 

 

                                = lim
ℎ→0

𝑎𝑏2

(𝑎2 + ℎ2𝑏4)
=
𝑎𝑏2

𝑎2
=
𝑏2

𝑎
. 

 
 

If 𝑎 = 0, then 𝑓(0⃗ + ℎ�⃗� ) = 0 for all ℎ and thus 𝐷�⃗⃗� 𝑓(0, 0) = 0. Thus, 

𝐷�⃗⃗� 𝑓(0, 0) exists in all directions. 
 
 
We can show that 𝐷𝑓(0,0) doesn’t exist in two ways. 
 

1.  𝐷𝑓(0, 0) does not exist because 𝑓(𝑥, 𝑦) is not continuous at (0, 0). We 

can see this since approaching (0, 0) by letting 
 ℎ1 = ℎ2

2, we get: 
 

lim
ℎ2→0

𝑓(ℎ2
2, ℎ2) = lim

ℎ2→0

ℎ2
2 ℎ2

2

ℎ2
4 + ℎ2

4 =
1

2
≠ 𝑓(0, 0) = 0 

 

So 𝑓(𝑥, 𝑦) is not continuous at (0, 0), hence 𝐷𝑓(0, 0) does not exist. 
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2. The second way to see this is to assume that 𝐷𝑓(0, 0) exists and get a 

contradiction. If 𝐷𝑓(0, 0) exists, then there is a linear transformation 

𝜆:ℝ2 → ℝ, 𝜆(𝑥, 𝑦) = 𝑎11𝑥 + 𝑎12𝑦 such that: 
 

0 = lim
ℎ→0

|𝑓(0⃗ + ℎ) − 𝑓(0⃗ ) − 𝜆(ℎ)|

|ℎ|
= lim
ℎ→0

|
ℎ1ℎ2

2

ℎ1
2 + ℎ2

4 − (𝑎11ℎ1 + 𝑎12ℎ2)|

|ℎ|
 . 

 
 

 
 
If ℎ → 0 along the 𝑥-axis, i.e. ℎ2 = 0, then the limits is: 
 

0 = lim
ℎ1→0

|−𝑎11ℎ1|

|ℎ1|
   ⇒   𝑎11 = 0 

 
 
If ℎ → 0 along the 𝑦-axis, i.e. ℎ1 = 0, then the limit is: 
 

0 = lim
ℎ2→0

|−𝑎12ℎ2|

|ℎ2|
   ⇒   𝑎12 = 0 

 
But this implies 𝜆 = ( 0     0 ). 
 
 
Now if ℎ → 0 along (ℎ2

2, ℎ2), then: 
 

0 = lim
ℎ2→0

|
ℎ2
2 ℎ2

2

ℎ2
4 + ℎ2

4|

√ℎ2
4 + ℎ2

2
= lim
ℎ2→0

1
2

√ℎ2
4 + ℎ2

2
≠ 0 

 
which is a contradiction, so 𝐷𝑓(0, 0) does not exist. 
 


