Differentiation and Directional Derivatives- HW Problems

1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = \sqrt{|xy|}$. Show that f is not differentiable at (0,0).

2. Let $g: \mathbb{R}^n \to \mathbb{R}$ where $|g(x)| \le |x|^2$. Prove that g is differentiable at (0,0, ..., 0). Hint: Figure out what Dg(0, ..., 0) must be and then show that it works.

3. Let $g: \mathbb{R} \to \mathbb{R}^2$ by $g(x) = (g_1(x), g_2(x))$. Prove that g is differentiable at $a \in \mathbb{R}$ if and only if $g_1(x)$ and $g_2(x)$ are and in that case $Dg(a) = \begin{pmatrix} g'_1(a) \\ g_2(a) \end{pmatrix}$.

4. Let $f(x, y) = \frac{x^2 y}{x^4 + y^4}$ if $(x, y) \neq (0, 0)$ = 0 if (x, y) = (0, 0).

Determine if f(x, y) is differentiable at (0, 0).

5. Find the directional derivative by calculating

$$D_{\vec{u}}F(x) = \frac{d}{dt}(F(x+t\vec{u}))$$
 at $t = 0$.

Check your answer by calculating the directional derivative by $D_{\vec{u}}F(x) = (DF(x))\vec{u}$. (You can calculate DF(x) by calculating the Jacobian matrix of partial derivatives)

- a. $F(x, y) = (x^3 y^3, xy)$ at (x, y) = (2,3) in the direction $\vec{u} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$
- b. F(x, y, z) = (x + y + z, xy, yz) at (x, y, z) = (1, 2, 3) in the direction $\vec{u} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right)$.