Vector Fields and Differential Forms on Manifolds

Def. Let $M \subseteq \mathbb{R}^n$ be a k -dimensional manifold. A **vector field on** M is a function on M that associates to each point $p \in M$ a vector $F(p) \in T_pM$.

Let $\overrightarrow{\Phi}$: $U \to M$ be a parametrization. Given a vector field $F(x)$ on M , there is a unique vector field G on U such that:

$$
\vec{\Phi}_*(G(a)) = F(\vec{\Phi}(a))
$$

for $a \in U$, and where:

$$
\vec{\Phi}_*(G(a)) = \left(D\vec{\Phi}(a)(G(a))\right)_{\vec{\Phi}(a)}.
$$

We say F is differentiable if G is differentiable. Note that the definition of differentiability of F does not depend on which parametrization is used.

Ex. Let M be parametrized by $\overrightarrow{\Phi}(u, v) = (u, v, u^2 + v^2)$. Then at each point $p = (u, v, u^2 + v^2)$ on M , the tangent space T_pM has a basis of }
} $\partial\overrightarrow{\Phi}$ $\frac{\partial \Psi}{\partial u}$, $\left\{\frac{\partial \overrightarrow{\Phi}}{\partial v}\right\} = \{(1,0,2u), (0,1,2v)\}.$ Thus we can express any vector field on M as:

$$
F(p) = f_1(p) \frac{\partial \vec{\Phi}}{\partial u} + f_2(p) \frac{\partial \vec{\Phi}}{\partial v};
$$

where f_1 and f_2 are real valued function on M.

For example, $F(u, v) = uv \frac{\partial \vec{\Phi}}{\partial v}$ $\frac{\partial \Psi}{\partial u} + (u - v)$ $\partial\overrightarrow{\Phi}$ ∂v Is a vector field on $\ M$.

Def. A function ω , which assigns $\omega(x)\in \Omega^p(T_x M)$ for each $x\in M$, is called a p -form on M .

If $\overrightarrow{\Phi}$: $U\rightarrow M$ is a parametrization, then $\overrightarrow{\Phi}^{*}(\omega)$ is a p -form on $U.$ We say $\boldsymbol{\omega}$ is differentiable if $\overrightarrow{\Phi}^*(\omega)$ is differentiable.

A p -form on M can be written as:

$$
\omega = \sum_{i_1 < \dots < i_p} \omega_{i_1, \dots, i_p} dx_{i_1} \wedge \dots \wedge dx_{i_p}
$$

where the functions $\omega_{i_{1},...,i_{p}}$ are defined on $M.$

Theorem: There is a unique $(p + 1)$ -form $d\omega$ on M such that for every parametrization $\overrightarrow{\Phi}$: $W \to M \subseteq \mathbb{R}^n$ we have:

$$
(\vec{\Phi})^*(d\omega) = d(\vec{\Phi}^*(\omega)).
$$

Proof: If $\overrightarrow{\Phi}$: $W\subseteq\mathbb{R}^k\to\mathbb{R}^n$ is a parametrization with $x=\overrightarrow{\Phi}(a)$ and $v_1,...,v_{p+1}\,\in T_x M$, then there are unique $w_1,...$, $w_{p+1}\,\in \mathbb{R}^k_a$ such that:

$$
\vec{\Phi}_*(w_i) = D\vec{\Phi}(a)(w_i) = v_i
$$

since $D\overrightarrow{\Phi}(a)$ is an invertible linear map from \mathbb{R}^k_a onto $T_xM.$

We define:

$$
d\omega(x)(v_1,\ldots,v_{p+1})=d(\vec{\Phi}^*\omega)(a)(w_1,\ldots,w_{p+1}).
$$

One can check that this doesn't depend on the parametrization chosen, so $d\omega$ is well defined.

Ex. Let M be parametrized by $\overrightarrow{\Phi}(u, v) = (u, v, u^2 + v^2)$. Then a 1-form on M has the form:

$$
\omega = f_1(u, v) du + f_2(u, v) dv
$$

where

where
$$
du \left(\frac{\partial \vec{\Phi}}{\partial u}\right) = 1
$$
, $du \left(\frac{\partial \vec{\Phi}}{\partial v}\right) = 0$
\n $dv \left(\frac{\partial \vec{\Phi}}{\partial u}\right) = 0$, $dv \left(\frac{\partial \vec{\Phi}}{\partial v}\right) = 1$.

For example:

$$
\omega = (uv)du + (u - v)dv
$$

Is a 1-form on M .

A 2-form on M has the form:

$$
\eta = f(u,v)dudv.
$$

For example:

$$
\eta = (u^2 - uv) du dv
$$

Is a 2-form on M .