Differentiable Maps Between Manifolds- HW Problems

- 1. Let f map the unit sphere into R by f(x, y, z) = x². Using the coordinate systems on S² given by
 (u, v) = π_N(x, y, z) = (^x/_{1-z}, ^y/_{1-z}) on S² (0,0,1)
 (ū, v) = π_S(x, y, z) = (^x/_{1+z}, ^{-y}/_{1+z}) on S² (0,0,-1):
 a. Find ^{∂f}/_{∂u}, ^{∂f}/_{∂v}, ^{∂f}/_{∂u}, ^{∂f}/_{∂v}.
 b. Find formulas relating ^{∂f}/_{∂u} to ^{∂f}/_{∂u} and ^{∂f}/_{∂v}, as well as ^{∂f}/_{∂v} to ^{∂f}/_{∂u} and ^{∂f}/_{∂v}.
- c. Consider the point on S^2 in cartesian corrdinates given by $\left(-\frac{\sqrt{2}}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Find the corresponding coordinates in (u, v) and (\bar{u}, \bar{v}) .
- d. Verify that the relationships you found in parts a and b hold for this point.