Manifolds

- Def. Let U and V be open sets in \mathbb{R}^n . A differentiable function, $h: U \to V$ with a differentiable inverse $h^{-1}\hskip-2pt:\hskip-2pt V\to U$, is called a **diffeomorphism** ("differentiable" will mean C^∞ from here on).
- Def. A subset, $M\subseteq\mathbb{R}^n$, is called a **differentiable manifold** (or just a manifold) of dimension k if for each point $x \in M$ there is an open set $W\subseteq\mathbb{R}^n$, an open set $U\subseteq\mathbb{R}^k$, and a diffeomorphism:

 $h: W \cap M \rightarrow U$.

 h is called a **system of coordinates** on $W \cap M$.

 $h^{-1}:U\to W\cap M$ is called a **parameterization** of $W\cap M$.

The set $\{h_\alpha, W_\alpha\}$ of coordinate functions and sets W_α that cover M is called an **atlas**.

Ex. A point in \mathbb{R}^n is a zero dimensional manifold. An open set in \mathbb{R}^n is an n-dimensional manifold. Notice that if (h_1, W_1) and (h_2, W_2) are two coordinate systems on $W_1, W_2 \subseteq M$, where $h_1: W_1 \to U_1$ and $h_2: W_2 \to U_2$, then:

$$
h_{12} = h_2 h_1^{-1}: h_1(W_1 \cap W_2) \to h_2(W_1 \cap W_2)
$$

is a differentiable map of an open set in ℝ *into an open set in* \mathbb{R}^k , and is called a **transition function** between the coordinate systems (h_1, W_1) and (h_2, W_2) .

Def. An atlas (h_α, W_α) is called **smooth** if all of the transition functions are smooth.

Ex. Show that $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1 \}$ is a (differentiable) manifold.

One way to do this is to define the following 6 parameterizations of the sphere, which cover the entire sphere.

$$
\vec{\Phi}_i: V \to \mathbb{R}^3 \text{ where } V = \{(u, v) \in \mathbb{R}^2 | u^2 + v^2 < 1 \} \n\vec{\Phi}_1(u, v) = (u, v, \sqrt{1 - u^2 - v^2}) \qquad (z > 0) \n\vec{\Phi}_2(u, v) = (u, v, -\sqrt{1 - u^2 - v^2}) \qquad (z < 0) \n\vec{\Phi}_3(u, v) = (u, \sqrt{1 - u^2 - v^2}, v) \qquad (y > 0) \n\vec{\Phi}_4(u, v) = (u, -\sqrt{1 - u^2 - v^2}, u) \qquad (y < 0) \n\vec{\Phi}_5(u, v) = (\sqrt{1 - u^2 - v^2}, u, v) \qquad (x > 0) \n\vec{\Phi}_6(u, v) = (-\sqrt{1 - u^2 - v^2}, u, v) \qquad (x < 0)
$$

To show that these 6 parameterizations make S^2 into a manifold we must show:

- $\overrightarrow{1)}\ \overrightarrow{\Phi}_i$ is a diffeomorphism, for $i=1,...,6$
- 2) $\bigcup_{i=1}^6 \overrightarrow{\Phi}_i$ 6 $_{i=1}^{6} \vec{\Phi}_i (V) \supseteq S^2$.

To show that $\overrightarrow{\Phi}_{i}$ is a diffeomorphism we must show:

- a. $\overrightarrow{\Phi}_{i}$ is one to one
- **b**. $\overrightarrow{\Phi}_i$ is onto its image
- c. $\overrightarrow{\Phi}_i$ and $\overrightarrow{\Phi}_i$ i^{-1} are differentiable.

Let's show that
$$
\overrightarrow{\Phi}_1
$$
 is a diffeomorphism.
\na. $\overrightarrow{\Phi}_1(u, v) = \overrightarrow{\Phi}_1(u', v')$
\n $(u, v, \sqrt{1 - u^2 - v^2}) = (u', v', \sqrt{1 - u'^2 - v'^2})$
\nSo $(u, v) = (u', v')$ and $\overrightarrow{\Phi}_1$ is one to on.

- b. By definition $\overrightarrow{\Phi}_{1}$ maps V onto $\overrightarrow{\Phi}_{1}(V)$.
- c. Each $\overrightarrow{\Phi}_i$ is differentiable on V because all of the partial derivatives of all order exist (since $u^2+v^2\neq 1$). The inverse functions of the $\overrightarrow{\Phi}_i$ s are just projections. For example:

$$
(\vec{\Phi}_1)^{-1} (u, v, \sqrt{1 - u^2 - v^2}) = (u, v).
$$

All partial derivatives of all orders exist so $\big(\overrightarrow{\Phi}_{1}\big)$ is differentiable. The same holds for the other $\big(\overrightarrow{\Phi}_i\big)$ −1 .

 $\bigcup_{i=1}^6 \overrightarrow{\Phi}_i$ 6 $_{i=1}^{6}$ $\overrightarrow{\Phi}_{i}$ $(V) \supseteq S^{2}$ because every point of S^{2} has at least one non-zero coordinate.

What do the transition functions look like? First, notice that not all $\overrightarrow{\Phi}_i(V)$, $\overrightarrow{\Phi}_j(V)$ intersect (e.g. $\overrightarrow{\Phi}_1(V)$ is the upper hemisphere and $\overrightarrow{\Phi}_2(V)$ is the lower hemisphere). As an example, let's look at $\overrightarrow{\Phi}_{1}(V) \cap \overrightarrow{\Phi}_{3}(V).$

$$
\vec{\Phi}_1(V) = \text{points on } S^2 \text{ with } z > 0
$$
\n
$$
\vec{\Phi}_3(V) = \text{points on } S^2 \text{ with } y > 0
$$
\n
$$
\vec{\Phi}_1(V) \cap \vec{\Phi}_3(V) = \text{points on } S^2 \text{ with } y > 0 \text{ and } z > 0.
$$
\n
$$
\vec{\Phi}_3(u, v) = (u, \sqrt{1 - u^2 - v^2}, v)
$$
\n
$$
\vec{\Phi}_3^{-1}(u, \sqrt{1 - u^2 - v^2}, v) = (u, v).
$$
\nSo
$$
(\vec{\Phi}_3)^{-1} \vec{\Phi}_1(u, v) = \vec{\Phi}_3^{-1}(u, v, \sqrt{1 - u^2 - v^2}) = (u, \sqrt{1 - u^2 - v^2}).
$$

Other transition functions are also differentiable, thus $\{\overrightarrow{\Phi}_{\!i}$ $^{-1}_i$, $\overrightarrow{\Phi}_{i}(V) \big\}$ for $i=1,...,6$ is a smooth atlas for S^2 .

Def. $H^k = \{x \in \mathbb{R}^k \big| x_k \geq 0 \}$, is called the **half-space**.

Ex. H^2 is the upper half plane including the x-axis. $H^3 = \{ (x, y, z) \in \mathbb{R}^3 | z \geq 0 \}.$

Def. $M \subseteq \mathbb{R}^n$ is a *k***-dimensional manifold with boundary** if each $x \in M$ has a neighborhood $W \cap M$ that is diffeomorphic to an open set $U \subseteq \mathbb{R}^k$ or diffeormorphic to $U\cap H^k$, where U is an open set in $\mathbb{R}^k.$ The set of points in M where $W \cap M$ is diffeomorphic to $U \cap H^k$ are called **boundary points** of $M.$

Ex. Show that the closed unit disk, $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$, is a manifold with boundary.

We need to show that for each point $(x, y) \in D$, there is a open set $W \subseteq \mathbb{R}^2$ containing (x, y) such that $W \cap D$ is diffeomorphic to an open set $U \subseteq \mathbb{R}^2$ or diffeomorphic to $U\cap H^2$, where U is an open set in $\mathbb{R}^2.$

Notice for points $(x, y) \in D$ such that $x^2 + y^2 < 1$ this is easy to do.

For these points let: $U_1 = W_1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$, and let

$$
h_1^{-1}: U_1 \subseteq \mathbb{R}^2 \to W_1 \cap D = W_1 \text{ by}
$$

$$
h_1^{-1}(x, y) = (x, y)
$$

 h_1^{-1} is the identity function and is clearly one-one, onto, and is its own inverse. Also, h_1^{-1} and h_1 are differentiable. Thus h_1^{-1} is a diffeomorphism.

To cover points on the boundary of D we need to do more work. We'll need 2 more sets to do this. We need to find open sets U and W such that $U \cap H^2$ is diffeomorphic to $W \cap D.$

Let
$$
U_2 = \{(x, y) | 0 < x < 2\pi, -1 < y < 1\}
$$

\n $W_2 = \mathbb{R}^2 - \{(x, 0) \in \mathbb{R}^2 | x \ge 0\}.$

Then $U_2 \cap H^2 = \{(x, y) | 0 < x < 2\pi, 0 \le y < 1\}.$ $W_2 \cap D = D - \{(x, 0) | 0 \le x \le 1\}.$

Now define: $_2^{-1}: U_2 \cap H^2 \to W_2 \cap D$ by $h_2^{-1}(x, y) = ((1 - y) \cos x, (1 - y) \sin x).$

Notice that for each fixed $y,\,\, 0\leq y < 1,\,\,h_2^{-1}$ maps the open interval $(x,y),$ $0 < x < 2\pi$, onto a circle of radius $1 - y$, centered at $(0,0)$ minus a point on the positive x -axis.

Now we need to show that h_2^{-1} is a diffeomorphism.

Claim: h_2^{-1} is one to one.

Suppose
$$
h_2^{-1}(x_1, y_1) = h_2^{-1}(x_2, y_2)
$$
, $0 < x_1, x_2 < 2\pi$, $0 \le y_1, y_2 < 1$
\nThen:
\n
$$
(1 - y_1) \cos x_1 = (1 - y_2) \cos x_2
$$
\n
$$
(1 - y_1) \sin x_1 = (1 - y_2) \sin x_2
$$

Now square both equations and add them:

$$
(1 - y1)2 cos2 x1 + (1 - y1)2 sin2 x1 = (1 - y2)2 cos2 x2 + (1 - y2)2 sin2 x2.
$$

Thus we have:

So:
\n
$$
(1 - y_1)^2 = (1 - y_2)^2; \qquad 0 \le y_1, y_2 < 1
$$
\n
$$
y_1 = y_2.
$$

Since $y_1 = y_2$, and $1 - y_1 \neq 0$, we can divide the original 2 equations by $1 - y_1$.

$$
cos x_1 = cos x_2 \quad \text{so } x_2 = x_1 \text{ or } x_2 = 2\pi - x_1
$$

\n
$$
sin x_1 = sin x_2 \quad \text{so } x_2 = x_1 \text{ or } x_2 = \pi - x_1.
$$

Hence $x_1 = x_2$, and h_2^{-1} is one to one.

To show that h_2^{-1} is onto $W_2 \cap D$ we'll show that given any point in $W_2 \cap D$ we can find a point in $U_2 \cap H^2$ that maps onto it. That is, we will find the inverse function, h_2 .

To do this we need to solve $x = x(u, v)$, $y = y(u, v)$ in: $u = (1 - y)cos x$ $v = (1 - y)\sin x$.

Squaring the 2 equations and adding we get:

$$
u^{2} + v^{2} = (1 - y)^{2} \cos^{2} x + (1 - y)^{2} \sin^{2} x = (1 - y)^{2}.
$$

Since $1 - y > 0$, we only get one square root above: $1 - y = \sqrt{u^2 + v^2}$ or $y = 1 - \sqrt{u^2 + v^2}$.

Notice that all of the partial derivatives of y of all orders exist since $(u, v) \neq (0, 0)$.

Since
$$
1 - y > 0
$$
, we have $1 - y \neq 0$, so we can divide the 2 original equations
\n
$$
\frac{v}{u} = \tan x.
$$

For the set $U_2 \cap H^2$, $\ 0 < x < 2\pi$, so we need to define the inverse of the above equation carefully:

$$
x = \tan^{-1} \frac{v}{u}
$$
 if (u, v) is in the 1st quadrant
\n
$$
= \frac{\pi}{2}
$$
 if $(u, v) = (0, 1)$
\n
$$
= \frac{3\pi}{2}
$$
 if (u, v) is in the 2nd/3rd quadrant
\n
$$
= \frac{3\pi}{2}
$$
 if $(u, v) = (0, -1)$
\n
$$
= 2\pi + \tan^{-1} \frac{v}{u}
$$
 if (u, v) is in the 4th quadrant.

It's not hard to show that all partial derivatives of all orders exist for x since $0 < x < 2\pi$.

Thus if we say $x(u, v)$ is the complicated formula written above and $y(u, v) = 1 - \sqrt{u^2 + v^2}$, then $h_2(u, v) = (x(u, v), y(u, v))$ is the differentiable inverse of $h_2^{-1}(x,y).$

 h_2^{-1} is clearly differentiable, thus, h_2^{-1} is a diffeomorphism.

Finally, let
$$
U_3 = \{(x, y) | -\pi < x < \pi, -1 < y < 1\}
$$

\n $W_3 = \mathbb{R}^2 - \{(x, 0) \in \mathbb{R}^2 | x \le 0\}.$

Then
$$
U_3 \cap H^2 = \{(x, y) | -\pi < x < \pi, 0 \le y < 1\}
$$
.
\n $W_3 \cap D = D - \{(x, 0) | -1 \le x \le 0\}$.

Now define:
$$
h_3^{-1}: U_3 \cap H^2 \to W_3 \cap D
$$
 by
 $h_3^{-1}(x, y) = ((1 - y)cosx, (1 - y)sinx).$

A similar argument to the one used to show h_2^{-1} is a diffeomorphism shows that h_3^{-1} is a diffeomorpism.

Now note that: $h_2^{-1}(U_2) \cup h_3^{-1}(U_3) = D - (0,0)$, but $(0,0) \in h_1^{-1}(U_1)$.

Thus we have:

 $\bigcup_{i=1}^{3} h_i(U_i) \supseteq D$ $\{a_{i=1}^3 h_i(U_i) \supseteq D$, and D is a differentiable manifold with boundary. Def. Let M be a differentiable manifold of dimension k . We say M is orientable if there is an atlas for M , $\{h_\alpha, W_\alpha\}$, such that all of the transition functions: $h_{\beta}\circ h_{\alpha}^{-1}\!$: $h_{\alpha}\big(W_{\alpha}\cap W_{\beta}\big)\to h_{\beta}\big(W_{\alpha}\cap W_{\beta}\big)\;$ have positive Jacobians (i.e. $\det \left(\left(h_\beta \circ h_\alpha^{-1} \right)' \right) > 0$).

Ex. Consider the following atlas on S^2

$$
\pi_1: S^2 - (0, 0, 1) \to \mathbb{R}^2
$$

$$
\pi_1(x, y, z) = \left(\frac{x}{1 - z}, \frac{y}{1 - z}\right)
$$

$$
\pi_2: S^2 - (0, 0, -1) \to \mathbb{R}^2
$$

$$
\pi_2(x, y, z) = \left(\frac{x}{1 + z}, -\frac{y}{1 + z}\right).
$$

From a homework problem you will see that:

$$
\pi_1^{-1}(u,v) = \left(\frac{2u}{u^2+v^2+1}, \frac{2v}{u^2+v^2+1}, \frac{u^2+v^2-1}{u^2+v^2+1}\right).
$$

Thus we have:

$$
(\pi_2 \circ \pi_1^{-1})(u,v) = \pi_2 \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \right) = \left(\frac{u}{u^2 + v^2}, \frac{-v}{u^2 + v^2} \right)
$$

$$
(\pi_2 \circ \pi_1^{-1})'(u, v) = \begin{pmatrix} \frac{u^2 - v^2}{(u^2 + v^2)^2} & \frac{-2uv}{(u^2 + v^2)^2} \\ \frac{2uv}{(u^2 + v^2)^2} & \frac{u^2 - v^2}{(u^2 + v^2)^2} \end{pmatrix}
$$

$$
\det((\pi_2 \circ \pi_1^{-1})') = \frac{(u^2 - v^2)^2 + 4u^2v^2}{(u^2 + v^2)^4} = \frac{1}{(u^2 + v^2)^2} > 0
$$

and finite since $\pi_1^{-1}(0,0)=(0,0,-1)$, which is not part of the domain of $\pi_2.$ Thus we can say S^2 is orientable.

Note: the atlas with $\pi_1(x, y, z) = \left(\frac{x}{1-z}\right)^{\frac{1}{2}}$ $\frac{x}{1-z}$, $\frac{y}{1-z}$ $\frac{y}{1-z}$) and $\pi_2(x, y, z) = \left(\frac{x}{1 + z}\right)$ $\frac{x}{1+z}, \frac{y}{1+z}$ $\left(\frac{y}{1+z}\right)$; the standard stereographic projection does not have:

$$
\det((\pi_2 \circ \pi_1^{-1})') > 0.
$$