Manifolds

- Def. Let U and V be open sets in \mathbb{R}^n . A differentiable function, $h: U \to V$ with a differentiable inverse $h^{-1}: V \to U$, is called a **diffeomorphism** ("differentiable" will mean C^{∞} from here on).
- Def. A subset, $M \subseteq \mathbb{R}^n$, is called a **differentiable manifold** (or just a manifold) of dimension k if for each point $x \in M$ there is an open set $W \subseteq \mathbb{R}^n$, an open set $U \subseteq \mathbb{R}^k$, and a diffeomorphism:

 $h: W \cap M \to U.$

h is called a **system of coordinates** on $W \cap M$. $h^{-1}: U \to W \cap M$ is called a **parameterization** of $W \cap M$.

The set $\{h_{\alpha}, W_{\alpha}\}$ of coordinate functions and sets W_{α} that cover M is called an **atlas**.

Ex. A point in \mathbb{R}^n is a zero dimensional manifold. An open set in \mathbb{R}^n is an *n*-dimensional manifold. Notice that if (h_1, W_1) and (h_2, W_2) are two coordinate systems on $W_1, W_2 \subseteq M$, where $h_1: W_1 \rightarrow U_1$ and $h_2: W_2 \rightarrow U_2$, then:

$$h_{12} = h_2 h_1^{-1} \colon h_1(W_1 \cap W_2) \to h_2(W_1 \cap W_2)$$

is a differentiable map of an open set in \mathbb{R}^k into an open set in \mathbb{R}^k , and is called a **transition function** between the coordinate systems (h_1, W_1) and (h_2, W_2) .

Def. An atlas (h_{α}, W_{α}) is called **smooth** if all of the transition functions are smooth.

Ex. Show that $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$ is a (differentiable) manifold.

One way to do this is to define the following 6 parameterizations of the sphere, which cover the entire sphere.

$$\begin{split} \overrightarrow{\Phi}_{i} : V \to \mathbb{R}^{3} \text{ where } V &= \{(u, v) \in \mathbb{R}^{2} | u^{2} + v^{2} < 1\} \\ \overrightarrow{\Phi}_{1}(u, v) &= (u, v, \sqrt{1 - u^{2} - v^{2}}) & (z > 0) \\ \overrightarrow{\Phi}_{2}(u, v) &= (u, v, -\sqrt{1 - u^{2} - v^{2}}) & (z < 0) \\ \overrightarrow{\Phi}_{3}(u, v) &= (u, \sqrt{1 - u^{2} - v^{2}}, v) & (y > 0) \\ \overrightarrow{\Phi}_{4}(u, v) &= (u, -\sqrt{1 - u^{2} - v^{2}}, v) & (y < 0) \\ \overrightarrow{\Phi}_{5}(u, v) &= (\sqrt{1 - u^{2} - v^{2}}, u, v) & (x > 0) \\ \overrightarrow{\Phi}_{6}(u, v) &= (-\sqrt{1 - u^{2} - v^{2}}, u, v) & (x < 0) \end{split}$$

To show that these 6 parameterizations make S^2 into a manifold we must show:

- 1) $\overrightarrow{\Phi}_i$ is a diffeomorphism, for i = 1, ..., 6
- 2) $\bigcup_{i=1}^{6} \overrightarrow{\Phi}_{i}(V) \supseteq S^{2}$.

To show that $\overrightarrow{\Phi}_i$ is a diffeomorphism we must show:

- a. $\overrightarrow{\Phi}_i$ is one to one
- b. $\overrightarrow{\Phi}_i$ is onto its image
- c. $\overrightarrow{\Phi}_i$ and $\overrightarrow{\Phi}_i^{-1}$ are differentiable.

Let's show that
$$\Phi_1$$
 is a diffeomorphism.
a. $\overrightarrow{\Phi}_1(u, v) = \overrightarrow{\Phi}_1(u', v')$
 $(u, v, \sqrt{1 - u^2 - v^2}) = (u', v', \sqrt{1 - {u'}^2 - {v'}^2})$
So $(u, v) = (u', v')$ and $\overrightarrow{\Phi}_1$ is one to on.

- b. By definition $\overrightarrow{\Phi}_1$ maps V onto $\overrightarrow{\Phi}_1(V)$.
- C. Each $\overrightarrow{\Phi}_i$ is differentiable on V because all of the partial derivatives of all order exist (since $u^2 + v^2 \neq 1$). The inverse functions of the $\overrightarrow{\Phi}_i$ s are just projections. For example:

$$\left(\vec{\Phi}_{1}\right)^{-1}\left(u,v,\sqrt{1-u^{2}-v^{2}}\right) = (u,v)$$

All partial derivatives of all orders exist so $(\vec{\Phi}_1)^{-1}$ is differentiable. The same holds for the other $(\vec{\Phi}_i)^{-1}$.

 $\bigcup_{i=1}^{6} \overrightarrow{\Phi}_{i}(V) \supseteq S^{2}$ because every point of S^{2} has at least one non-zero coordinate.

What do the transition functions look like? First, notice that not all $\vec{\Phi}_i(V), \vec{\Phi}_j(V)$ intersect (e.g. $\vec{\Phi}_1(V)$ is the upper hemisphere and $\vec{\Phi}_2(V)$ is the lower hemisphere). As an example, let's look at $\vec{\Phi}_1(V) \cap \vec{\Phi}_3(V)$.

$$\vec{\Phi}_1(V) = \text{points on } S^2 \text{ with } z > 0$$

$$\vec{\Phi}_3(V) = \text{points on } S^2 \text{ with } y > 0$$

$$\vec{\Phi}_1(V) \cap \vec{\Phi}_3(V) = \text{points on } S^2 \text{ with } y > 0 \text{ and } z > 0.$$

$$\vec{\Phi}_3(u,v) = (u,\sqrt{1-u^2-v^2},v)$$

$$\vec{\Phi}_3^{-1}(u,\sqrt{1-u^2-v^2},v) = (u,v).$$

So $(\vec{\Phi}_3)^{-1}\vec{\Phi}_1(u,v) = \vec{\Phi}_3^{-1}(u,v,\sqrt{1-u^2-v^2}) = (u,\sqrt{1-u^2-v^2}).$

Other transition functions are also differentiable, thus $\{\vec{\Phi}_i^{-1}, \vec{\Phi}_i(V)\}$ for i = 1, ..., 6 is a smooth atlas for S^2 .

Def. $H^k = \{x \in \mathbb{R}^k | x_k \ge 0\}$, is called the half-space.

Ex. H^2 is the upper half plane including the *x*-axis. $H^3 = \{(x, y, z) \in \mathbb{R}^3 | z \ge 0\}.$ Def. $M \subseteq \mathbb{R}^n$ is a *k*-dimensional manifold with boundary if each $x \in M$ has a neighborhood $W \cap M$ that is diffeomorphic to an open set $U \subseteq \mathbb{R}^k$ or diffeormorphic to $U \cap H^k$, where U is an open set in \mathbb{R}^k . The set of points in M where $W \cap M$ is diffeomorphic to $U \cap H^k$ are called **boundary points** of M.

Ex. Show that the closed unit disk, $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$, is a manifold with boundary.

We need to show that for each point $(x, y) \in D$, there is a open set $W \subseteq \mathbb{R}^2$ containing (x, y) such that $W \cap D$ is diffeomorphic to an open set $U \subseteq \mathbb{R}^2$ or diffeomorphic to $U \cap H^2$, where U is an open set in \mathbb{R}^2 .

Notice for points $(x, y) \in D$ such that $x^2 + y^2 < 1$ this is easy to do.

For these points let: $U_1=W_1=\{(x,y)\in \mathbb{R}^2 | \ x^2+y^2<1\}, \ \text{ and let}$

$$h_1^{-1}: U_1 \subseteq \mathbb{R}^2 \to W_1 \cap D = W_1 \quad \text{by} \\ h_1^{-1}(x, y) = (x, y)$$

 h_1^{-1} is the identity function and is clearly one-one, onto, and is its own inverse. Also, h_1^{-1} and h_1 are differentiable. Thus h_1^{-1} is a diffeomorphism.

To cover points on the boundary of D we need to do more work. We'll need 2 more sets to do this. We need to find open sets U and W such that $U \cap H^2$ is diffeomorphic to $W \cap D$.

Let
$$U_2 = \{(x, y) | 0 < x < 2\pi, -1 < y < 1\}$$

 $W_2 = \mathbb{R}^2 - \{(x, 0) \in \mathbb{R}^2 | x \ge 0\}.$

Then $U_2 \cap H^2 = \{(x, y) | \ 0 < x < 2\pi, \ 0 \le y < 1\}.$ $W_2 \cap D = D - \{(x, 0) | \ 0 \le x \le 1\}.$

Now define: $h_2^{-1}: U_2 \cap H^2 \to W_2 \cap D$ by $h_2^{-1}(x, y) = ((1 - y)cosx, (1 - y)sinx).$

Notice that for each fixed y, $0 \le y < 1$, h_2^{-1} maps the open interval (x, y), $0 < x < 2\pi$, onto a circle of radius 1 - y, centered at (0,0) minus a point on the positive x-axis.

Now we need to show that h_2^{-1} is a diffeomorphism.

Claim: h_2^{-1} is one to one.

Suppose
$$h_2^{-1}(x_1, y_1) = h_2^{-1}(x_2, y_2), \ 0 < x_1, x_2 < 2\pi, \ 0 \le y_1, y_2 < 1$$

Then:
 $(1 - y_1)cosx_1 = (1 - y_2)cosx_2$
 $(1 - y_1)sinx_1 = (1 - y_2)sinx_2$

Now square both equations and add them:

$$(1 - y_1)^2 \cos^2 x_1 + (1 - y_1)^2 \sin^2 x_1 = (1 - y_2)^2 \cos^2 x_2 + (1 - y_2)^2 \sin^2 x_2$$

Thus we have:

So:
$$(1 - y_1)^2 = (1 - y_2)^2; \qquad 0 \le y_1, y_2 < 1$$

 $y_1 = y_2.$

Since $y_1 = y_2$, and $1 - y_1 \neq 0$, we can divide the original 2 equations by $1 - y_1$.

$$cosx_1 = cosx_2$$
 so $x_2 = x_1$ or $x_2 = 2\pi - x_1$
 $sinx_1 = sinx_2$ so $x_2 = x_1$ or $x_2 = \pi - x_1$.

Hence $x_1 = x_2$, and h_2^{-1} is one to one.

To show that h_2^{-1} is onto $W_2 \cap D$ we'll show that given any point in $W_2 \cap D$ we can find a point in $U_2 \cap H^2$ that maps onto it. That is, we will find the inverse function, h_2 .

To do this we need to solve x = x(u, v), y = y(u, v) in: u = (1 - y)cosxv = (1 - y)sinx. Squaring the 2 equations and adding we get:

$$u^{2} + v^{2} = (1 - y)^{2} \cos^{2} x + (1 - y)^{2} \sin^{2} x = (1 - y)^{2}.$$

Since 1 - y > 0, we only get one square root above: $1 - y = \sqrt{u^2 + v^2}$ or $y = 1 - \sqrt{u^2 + v^2}$.

Notice that all of the partial derivatives of y of all orders exist since $(u, v) \neq (0, 0)$.

Since
$$1 - y > 0$$
, we have $1 - y \neq 0$, so we can divide the 2 original equations $\frac{v}{u} = tanx$.

For the set $U_2 \cap H^2$, $0 < x < 2\pi$, so we need to define the inverse of the above equation carefully:

$$x = \tan^{-1} \frac{v}{u}$$

$$= \frac{\pi}{2}$$

$$= \pi + \tan^{-1} \frac{v}{u}$$

$$= \frac{3\pi}{2}$$

$$= 2\pi + \tan^{-1} \frac{v}{u}$$

if (u, v) is in the 1st quadrant
if $(u, v) = (0, 1)$
if (u, v) is in the 2nd/3rd quadrant
if $(u, v) = (0, -1)$
if (u, v) is in the 4th quadrant.

It's not hard to show that all partial derivatives of all orders exist for x since $0 < x < 2\pi$.

Thus if we say x(u, v) is the complicated formula written above and $y(u, v) = 1 - \sqrt{u^2 + v^2}$, then $h_2(u, v) = (x(u, v), y(u, v))$ is the differentiable inverse of $h_2^{-1}(x, y)$.

 h_2^{-1} is clearly differentiable, thus, h_2^{-1} is a diffeomorphism.

Finally, let
$$U_3 = \{(x, y) | -\pi < x < \pi, -1 < y < 1\}$$

 $W_3 = \mathbb{R}^2 - \{(x, 0) \in \mathbb{R}^2 | x \le 0\}.$

Then
$$U_3 \cap H^2 = \{(x, y) | -\pi < x < \pi, 0 \le y < 1\}.$$

 $W_3 \cap D = D - \{(x, 0) | -1 \le x \le 0\}.$

Now define:
$$h_3^{-1}: U_3 \cap H^2 \to W_3 \cap D$$
 by
 $h_3^{-1}(x, y) = ((1 - y) cosx, (1 - y) sinx).$

A similar argument to the one used to show h_2^{-1} is a diffeomorphism shows that h_3^{-1} is a diffeomorphism.

Now note that: $h_2^{-1}(U_2) \cup h_3^{-1}(U_3) = D - (0,0)$, but $(0,0) \in h_1^{-1}(U_1)$.

Thus we have:

 $\bigcup_{i=1}^{3} h_i(U_i) \supseteq D$, and D is a differentiable manifold with boundary.

Def. Let M be a differentiable manifold of dimension k. We say M is orientable if there is an atlas for M, $\{h_{\alpha}, W_{\alpha}\}$, such that all of the transition functions: $h_{\beta} \circ h_{\alpha}^{-1}$: $h_{\alpha}(W_{\alpha} \cap W_{\beta}) \to h_{\beta}(W_{\alpha} \cap W_{\beta})$ have positive Jacobians (i.e. det $((h_{\beta} \circ h_{\alpha}^{-1})') > 0)$.

Ex. Consider the following atlas on S^2

$$\pi_1: S^2 - (0, 0, 1) \to \mathbb{R}^2$$
$$\pi_1(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$
$$\pi_2: S^2 - (0, 0, -1) \to \mathbb{R}^2$$
$$\pi_2(x, y, z) = \left(\frac{x}{1+z}, -\frac{y}{1+z}\right).$$

From a homework problem you will see that:

$$\pi_1^{-1}(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right).$$

Thus we have:

$$(\pi_2 \circ \pi_1^{-1})(u, v) = \pi_2 \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \right) = \left(\frac{u}{u^2 + v^2}, \frac{-v}{u^2 + v^2} \right)$$

$$(\pi_2 \circ \pi_1^{-1})'(u,v) = \begin{pmatrix} \frac{u^2 - v^2}{(u^2 + v^2)^2} & \frac{-2uv}{(u^2 + v^2)^2} \\ \frac{2uv}{(u^2 + v^2)^2} & \frac{u^2 - v^2}{(u^2 + v^2)^2} \end{pmatrix}$$

$$\det((\pi_2 \circ \pi_1^{-1})') = \frac{(u^2 - v^2)^2 + 4u^2v^2}{(u^2 + v^2)^4} = \frac{1}{(u^2 + v^2)^2} > 0$$

and finite since $\pi_1^{-1}(0,0) = (0,0,-1)$, which is not part of the domain of π_2 . Thus we can say S^2 is orientable.

Note: the atlas with $\pi_1(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$ and $\pi_2(x, y, z) = \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$; the standard stereographic projection does not have:

$$\det((\pi_2 \circ \pi_1^{-1})') > 0.$$