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Manifolds 
 

Def.  Let 𝑈 and 𝑉 be open sets in ℝ𝑛. A differentiable function, ℎ:𝑈 → 𝑉 with 

         a differentiable inverse ℎ−1: 𝑉 → 𝑈, is called a diffeomorphism 

         (“differentiable” will mean 𝐶∞ from here on).  
 

Def.  A subset, 𝑀 ⊆ ℝ𝑛, is called a differentiable manifold (or just a 

 manifold) of dimension 𝑘 if for each point 𝑥 ∈ 𝑀 there is an open 

 set 𝑊 ⊆ ℝ𝑛, an open set 𝑈 ⊆ ℝ𝑘, and a diffeomorphism: 
 

ℎ:𝑊 ∩ 𝑀 → 𝑈. 
 

 ℎ is called a system of coordinates on 𝑊 ∩ 𝑀. 
 

 ℎ−1: 𝑈 → 𝑊 ∩ 𝑀 is called a parameterization of 𝑊 ∩ 𝑀. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The set {ℎ𝛼 ,𝑊𝛼} of coordinate functions and sets 𝑊𝛼 that cover 𝑀  is called an 

atlas. 

 
 
Ex.   A point in ℝ𝑛 is a zero dimensional manifold.  
       An open set in ℝ𝑛 is an 𝑛-dimensional manifold.  

𝑀 𝑊 ∩ 𝑀 

𝑥 

𝑈 

ℎ 

ℎ−1 
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𝑀 

        Notice that if (ℎ1,𝑊1) and (ℎ2,𝑊2) are two coordinate systems on      
        𝑊1,𝑊2 ⊆ 𝑀, where ℎ1:𝑊1 → 𝑈1 and ℎ2:𝑊2 → 𝑈2, then: 
 

ℎ12 = ℎ2ℎ1
−1: ℎ1(𝑊1 ∩ 𝑊2) → ℎ2(𝑊1 ∩ 𝑊2) 

 

 is a differentiable map of an open set in ℝ𝑘 into an open set in     
          ℝ𝑘, and is called a transition function between the coordinate 

 systems (ℎ1,𝑊1) and (ℎ2,𝑊2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Def.  An atlas (ℎ𝛼 ,𝑊𝛼) is called smooth if all of the transition functions are smooth. 

𝑊1      𝑊1 ∩ 𝑊2      𝑊2 

𝑈1 

ℎ1 

ℎ1
−1 

ℎ1(𝑊1 ∩ 𝑊2) 

𝑈2 

ℎ2(𝑊1 ∩ 𝑊2) 

ℎ2 

ℎ2
−1 

ℎ2ℎ1
−1 
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Ex.  Show that 𝑆2 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝑥2 + 𝑦2 + 𝑧2 = 1} is a (differentiable) 
        manifold. 
 

One way to do this is to define the following 6 parameterizations of the sphere, 
which cover the entire sphere. 
 

Φ⃗⃗⃗ 𝑖: 𝑉 → ℝ3 where 𝑉 = {(𝑢, 𝑣) ∈ ℝ2| 𝑢2 + 𝑣2 < 1} 
 

              Φ⃗⃗⃗ 1(𝑢, 𝑣) = (𝑢, 𝑣, √1 − 𝑢2 − 𝑣2)                  (𝑧 > 0)  

Φ⃗⃗⃗ 2(𝑢, 𝑣) = (𝑢, 𝑣, −√1 − 𝑢2 − 𝑣2)              (𝑧 < 0)  

Φ⃗⃗⃗ 3(𝑢, 𝑣) = (𝑢, √1 − 𝑢2 − 𝑣2, 𝑣 )                 (𝑦 > 0)  

Φ⃗⃗⃗ 4(𝑢, 𝑣) = (𝑢, −√1 − 𝑢2 − 𝑣2, 𝑣)               (𝑦 < 0)  

Φ⃗⃗⃗ 5(𝑢, 𝑣) = (√1 − 𝑢2 − 𝑣2, 𝑢, 𝑣 )                (𝑥 > 0)  

 Φ⃗⃗⃗ 6(𝑢, 𝑣) = (−√1 − 𝑢2 − 𝑣2, 𝑢, 𝑣 )             (𝑥 < 0)  

 

 

 

 

 

 

 

 

 

 

 
 

To show that these 6 parameterizations make 𝑆2 into a manifold we must 
            show: 

1) Φ⃗⃗⃗ 𝑖 is a diffeomorphism, for 𝑖 = 1, … ,6  

2) ⋃ Φ⃗⃗⃗ 𝑖
6
𝑖=1 (𝑉) ⊇ 𝑆2. 

 

𝑢 

𝑣 

𝑢2 + 𝑣2 < 1 

Φ⃗⃗⃗ 1(𝑢, 𝑣) = (𝑢, 𝑣, √1 − 𝑢2 − 𝑣2)  

Φ⃗⃗⃗ 1 

𝑉 
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          To show that Φ⃗⃗⃗ 𝑖 is a diffeomorphism we must show: 

a. Φ⃗⃗⃗ 𝑖 is one to one 

b. Φ⃗⃗⃗ 𝑖 is onto its image 

c. Φ⃗⃗⃗ 𝑖 and Φ⃗⃗⃗ 𝑖
−1 are differentiable. 

 
 
 

           Let’s show that Φ⃗⃗⃗ 1 is a diffeomorphism. 

a.                          Φ⃗⃗⃗ 1(𝑢, 𝑣) = Φ⃗⃗⃗ 1(𝑢
′, 𝑣′)  

    (𝑢, 𝑣, √1 − 𝑢2 − 𝑣2) = (𝑢′, 𝑣′, √1 − 𝑢′2 − 𝑣′2) 

   So (𝑢, 𝑣) = (𝑢′, 𝑣′) and Φ⃗⃗⃗ 1 is one to on. 
 

b. By definition Φ⃗⃗⃗ 1 maps 𝑉 onto Φ⃗⃗⃗ 1(𝑉). 
 

 

c. Each Φ⃗⃗⃗ 𝑖 is differentiable on 𝑉 because all of the partial derivatives of 

all order exist (since 𝑢2 + 𝑣2 ≠ 1). The inverse functions of the Φ⃗⃗⃗ 𝑖s 
are just projections. For example: 

 

(Φ⃗⃗⃗ 1)
−1

(𝑢, 𝑣, √1 − 𝑢2 − 𝑣2) = (𝑢, 𝑣). 

All partial derivatives of all orders exist so (Φ⃗⃗⃗ 1)
−1

 is differentiable. The 

same holds for the other (Φ⃗⃗⃗ 𝑖)
−1

. 

 
 

⋃ Φ⃗⃗⃗ 𝑖
6
𝑖=1 (𝑉) ⊇ 𝑆2 because every point of 𝑆2 has at least one non-zero 

coordinate.  
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What do the transition functions look like? First, notice that not all 

Φ⃗⃗⃗ 𝑖(𝑉), Φ⃗⃗⃗ 𝑗(𝑉) intersect (e.g. Φ⃗⃗⃗ 1(𝑉) is the upper hemisphere and Φ⃗⃗⃗ 2(𝑉) is the 

lower hemisphere). As an example, let’s look at Φ⃗⃗⃗ 1(𝑉) ∩ Φ⃗⃗⃗ 3(𝑉). 
 

Φ⃗⃗⃗ 1(𝑉) = points on 𝑆2 with 𝑧 > 0 

Φ⃗⃗⃗ 3(𝑉) = points on 𝑆2 with 𝑦 > 0 
 
 

Φ⃗⃗⃗ 1(𝑉) ∩ Φ⃗⃗⃗ 3(𝑉) = points on 𝑆2 with 𝑦 > 0 and 𝑧 > 0. 
 

Φ⃗⃗⃗ 3(𝑢, 𝑣) = (𝑢, √1 − 𝑢2 − 𝑣2, 𝑣 )  

Φ⃗⃗⃗ 3
−1(𝑢, √1 − 𝑢2 − 𝑣2, 𝑣) = (𝑢, 𝑣).  

 
 

So (Φ⃗⃗⃗ 3)
−1

Φ⃗⃗⃗ 1(𝑢, 𝑣) =  Φ⃗⃗⃗ 3
−1(𝑢, 𝑣, √1 − 𝑢2 − 𝑣2 ) = (𝑢, √1 − 𝑢2 − 𝑣2). 

  
 

Other transition functions are also differentiable, thus {Φ⃗⃗⃗ 𝑖
−1, Φ⃗⃗⃗ 𝑖(𝑉)} for         

𝑖 = 1, … ,6  is a smooth atlas for 𝑆2. 
 
 

Def.  𝐻𝑘 = {𝑥 ∈ ℝ𝑘|𝑥𝑘 ≥ 0}, is called the half-space. 

 
 
Ex.  𝐻2 is the upper half plane including the 𝑥-axis. 
 

       𝐻3 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝑧 ≥ 0}.  
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Def.  𝑀 ⊆ ℝ𝑛 is a 𝒌-dimensional manifold with boundary if each 𝑥 ∈ 𝑀  has a 

neighborhood 𝑊 ∩ 𝑀 that is diffeomorphic to an open set 𝑈 ⊆ ℝ𝑘 or 

diffeormorphic to 𝑈 ∩ 𝐻𝑘, where 𝑈 is an open set in ℝ𝑘. The set of points in 𝑀 

where 𝑊 ∩ 𝑀 is diffeomorphic to 𝑈 ∩ 𝐻𝑘  are called boundary points of 𝑀. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex.  Show that the closed unit disk, 𝐷 = {(𝑥, 𝑦) ∈ ℝ2| 𝑥2 + 𝑦2 ≤ 1}, is a manifold 

with boundary. 
 
We need to show that for each point (𝑥, 𝑦) ∈ 𝐷, there is a open set 𝑊 ⊆ ℝ2 
containing (𝑥, 𝑦) such that 𝑊 ∩ 𝐷 is diffeomorphic to an open set 𝑈 ⊆ ℝ2 or 

diffeomorphic to 𝑈 ∩ 𝐻2, where 𝑈 is an open set in ℝ2. 
 
 
 
 
 
 
 
 

𝑊 ∩ 𝑀 

𝑥 

𝑀 𝑈 ∩ 𝐻𝑘  

ℎ 

1 −1 

𝐷 
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Notice for points (𝑥, 𝑦) ∈ 𝐷 such that 𝑥2 + 𝑦2 < 1 this is easy to do.   
 
 
 
 
 
 
 
 
 
 
 
 
For these points let: 

     𝑈1 = 𝑊1 = {(𝑥, 𝑦) ∈ ℝ2| 𝑥2 + 𝑦2 < 1},   and let 
 
                 ℎ1

−1: 𝑈1 ⊆ ℝ2 → 𝑊1 ∩ 𝐷 = 𝑊1    by 
                           ℎ1

−1(𝑥, 𝑦) = (𝑥, 𝑦) 
 
 

ℎ1
−1 is the identity function and is clearly one-one, onto, and is its own inverse.  

Also, ℎ1
−1 and ℎ1 are differentiable.  Thus ℎ1

−1  is a diffeomorphism. 
 
 
 
 
To cover points on the boundary of 𝐷 we need to do more work. 

We’ll need 2 more sets to do this.  We need to find open sets 𝑈 and 𝑊 such that 

𝑈 ∩ 𝐻2 is diffeomorphic to 𝑊 ∩ 𝐷. 
 
 
 
 

(𝑥, 𝑦) 

𝑊1 ∩ 𝐷 = 𝑊1 

ℎ1
−1 (𝑥, 𝑦) 

𝑈1 
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Let        𝑈2 = {(𝑥, 𝑦)| 0 < 𝑥 < 2𝜋, −1 < 𝑦 < 1} 
             𝑊2 = ℝ2 − {(𝑥, 0) ∈ ℝ2| 𝑥 ≥ 0}. 
 
Then    𝑈2 ∩ 𝐻2 = {(𝑥, 𝑦)| 0 < 𝑥 < 2𝜋, 0 ≤ 𝑦 < 1}. 
             𝑊2 ∩ 𝐷 = 𝐷 − {(𝑥, 0)| 0 ≤ 𝑥 ≤ 1}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now define:      ℎ2

−1: 𝑈2 ∩ 𝐻2 → 𝑊2 ∩ 𝐷   by 

                        ℎ2
−1(𝑥, 𝑦) = ((1 − 𝑦)𝑐𝑜𝑠𝑥, (1 − 𝑦)𝑠𝑖𝑛𝑥). 

 
 
 
Notice that for each fixed 𝑦, 0 ≤ 𝑦 < 1,  ℎ2

−1 maps the open interval (𝑥, 𝑦),
0 < 𝑥 < 2𝜋, onto a circle of radius 1 − 𝑦, centered at (0,0) minus a point on 

the positive 𝑥-axis. 

 
 
 
 
 
 
 

0                                                                    2𝜋 

1 

−1 

𝑈2 ∩ 𝐻2 

𝑈2 
1 −1 

𝑊2 ∩ 𝐷 ℎ2
−1 
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Now we need to show that ℎ2
−1 is a diffeomorphism.  

 

Claim:  ℎ2
−1 is one to one. 

 
 Suppose  ℎ2

−1(𝑥1, 𝑦1) = ℎ2
−1(𝑥2, 𝑦2),   0 < 𝑥1, 𝑥2 < 2𝜋,   0 ≤ 𝑦1, 𝑦2 < 1 

      Then: 

                     (1 − 𝑦1)𝑐𝑜𝑠𝑥1 = (1 − 𝑦2)𝑐𝑜𝑠𝑥2 
                      (1 − 𝑦1)𝑠𝑖𝑛𝑥1 = (1 − 𝑦2)𝑠𝑖𝑛𝑥2 
 
Now square both equations and add them:                                                     
   (1 − 𝑦1)

2 cos2 𝑥1 + (1 − 𝑦1)
2 sin2 𝑥1 =  (1 − 𝑦2)

2 cos2 𝑥2                             
                                                                                               +(1 − 𝑦2)

2 sin2 𝑥2 . 
 
Thus we have: 

                       (1 − 𝑦1)
2 = (1 − 𝑦2)

2;            0 ≤ 𝑦1, 𝑦2 < 1   
So:                                𝑦1 = 𝑦2. 
 
Since 𝑦1 = 𝑦2, and 1 − 𝑦1 ≠ 0, we can divide the original 2 equations by 1 − 𝑦1. 
 
                 𝑐𝑜𝑠𝑥1 = 𝑐𝑜𝑠𝑥2    so  𝑥2 = 𝑥1 or  𝑥2 = 2𝜋 − 𝑥1 
                  𝑠𝑖𝑛𝑥1 = 𝑠𝑖𝑛𝑥2    so  𝑥2 = 𝑥1 or  𝑥2 = 𝜋 − 𝑥1. 
 
Hence 𝑥1 = 𝑥2,   and  ℎ2

−1 is one to one. 
 
 
To show that ℎ2

−1 is onto 𝑊2 ∩ 𝐷 we’ll show that given any point in 𝑊2 ∩ 𝐷   
we can find a point in 𝑈2 ∩ 𝐻2 that maps onto it.  That is, we will find the 

inverse function, ℎ2. 
 
To do this we need to solve 𝑥 = 𝑥(𝑢, 𝑣), 𝑦 = 𝑦(𝑢, 𝑣)  in: 
              𝑢 = (1 − 𝑦)𝑐𝑜𝑠𝑥 
              𝑣 = (1 − 𝑦)𝑠𝑖𝑛𝑥. 
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Squaring the 2 equations and adding we get: 

             𝑢2 + 𝑣2 = (1 − 𝑦)2 cos2 𝑥 + (1 − 𝑦)2 sin2 𝑥 = (1 − 𝑦)2. 
 
Since 1 − 𝑦 > 0,  we only get one square root above: 

              1 − 𝑦 = √𝑢2 + 𝑣2 

       or            𝑦 = 1 − √𝑢2 + 𝑣2. 
 
Notice that all of the partial derivatives of 𝑦 of all orders exist since (𝑢, 𝑣) ≠ (0,0). 
 
Since 1 − 𝑦 > 0,  we have 1 − 𝑦 ≠ 0, so we can divide the 2 original equations  

                        
𝑣

𝑢
= 𝑡𝑎𝑛𝑥. 

 
For the set 𝑈2 ∩ 𝐻2,  0 < 𝑥 < 2𝜋, so we need to define the inverse of the 

above equation carefully: 

                       𝑥 = tan−1 𝑣

𝑢
                       if (𝑢, 𝑣) is in the 1st  quadrant 

                           =
𝜋

2
                                  if (𝑢, 𝑣) = (0,1) 

                           = 𝜋 + tan−1 𝑣

𝑢
               if (𝑢, 𝑣) is in the 2nd/3rd quadrant 

                           =
3𝜋

2
                                 if (𝑢, 𝑣) = (0, −1) 

                           = 2𝜋 + tan−1 𝑣

𝑢
             if (𝑢, 𝑣) is in the 4th quadrant.  

 
 

It’s not hard to show that all partial derivatives of all orders exist for 𝑥 since     
0 < 𝑥 < 2𝜋.  
 
 

Thus if we say 𝑥(𝑢, 𝑣) is the complicated formula written above and        

𝑦(𝑢, 𝑣) = 1 − √𝑢2 + 𝑣2, then ℎ2(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)) is the 

differentiable inverse of ℎ2
−1(𝑥, 𝑦).  

 
 

ℎ2
−1 is clearly differentiable, thus, ℎ2

−1 is a diffeomorphism. 
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Finally, let      𝑈3 = {(𝑥, 𝑦)| − 𝜋 < 𝑥 < 𝜋, −1 < 𝑦 < 1} 
                     𝑊3 = ℝ2 − {(𝑥, 0) ∈ ℝ2| 𝑥 ≤ 0}. 
 
Then    𝑈3 ∩ 𝐻2 = {(𝑥, 𝑦)| − 𝜋 < 𝑥 < 𝜋, 0 ≤ 𝑦 < 1}. 
             𝑊3 ∩ 𝐷 = 𝐷 − {(𝑥, 0)| − 1 ≤ 𝑥 ≤ 0}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now define:      ℎ3

−1: 𝑈3 ∩ 𝐻2 → 𝑊3 ∩ 𝐷   by 

                           ℎ3
−1(𝑥, 𝑦) = ((1 − 𝑦)𝑐𝑜𝑠𝑥, (1 − 𝑦)𝑠𝑖𝑛𝑥). 

 
 
A similar argument to the one used to show ℎ2

−1 is a diffeomorphism shows that 

ℎ3
−1 is a diffeomorpism. 

 
Now note that:  ℎ2

−1(𝑈2) ∪ ℎ3
−1(𝑈3) = 𝐷 − (0,0), 

but (0,0) ∈ ℎ1
−1(𝑈1).   

 
Thus we have: 
        ⋃ ℎ𝑖(𝑈𝑖) ⊇ 𝐷3

𝑖=1 ,   and 𝐷 is a differentiable manifold with boundary. 

 
 

−𝜋                                                                   𝜋 

1 

−1 

𝑈3 ∩ 𝐻2 

𝑈3 
1 −1 

𝑊3 ∩ 𝐷 
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Def.   Let 𝑀 be a differentiable manifold of dimension 𝑘. We say 𝑀 is 

 orientable if there is an atlas for 𝑀, {ℎ𝛼 ,𝑊𝛼}, such that all of the 

 transition functions: ℎ𝛽 ∘ ℎ𝛼
−1: ℎ𝛼(𝑊𝛼 ∩ 𝑊𝛽) → ℎ𝛽(𝑊𝛼 ∩ 𝑊𝛽)  have 

           positive Jacobians (i.e. det ((ℎ𝛽 ∘ ℎ𝛼
−1)

′
) > 0). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑊𝛼        𝑊𝛼 ∩ 𝑊𝛽     𝑊𝛽 

ℎ𝛼  ℎ𝛽 

ℎ𝛼(𝑊𝛼 ∩ 𝑊𝛽) 

ℎ𝛽(𝑊𝛼 ∩ 𝑊𝛽) 

 

ℎ𝛽ℎ𝛼
−1 
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Ex.  Consider the following atlas on 𝑆2 
 

𝜋1: 𝑆
2 − (0, 0, 1) → ℝ2 

 

𝜋1(𝑥, 𝑦, 𝑧) = (
𝑥

1−𝑧
,

𝑦

1−𝑧
)  

 
𝜋2: 𝑆

2 − (0, 0, −1) → ℝ2 
 

𝜋2(𝑥, 𝑦, 𝑧) = (
𝑥

1+𝑧
, −

𝑦

1+𝑧
).  

 

 From a homework problem you will see that: 
 

𝜋1
−1(𝑢, 𝑣) = (

2𝑢

𝑢2+𝑣2+1
,

2𝑣

𝑢2+𝑣2+1
,
𝑢2+𝑣2−1

𝑢2+𝑣2+1
).  

  

 Thus we have: 
 

(𝜋2 ∘ 𝜋1
−1)(𝑢, 𝑣) = 𝜋2 (

2𝑢

𝑢2+𝑣2+1
,

2𝑣

𝑢2+𝑣2+1
,
𝑢2+𝑣2−1

𝑢2+𝑣2+1
) = (

𝑢

𝑢2+𝑣2  ,
−𝑣

𝑢2+𝑣2)  

 

(𝜋2 ∘ 𝜋1
−1)′(𝑢, 𝑣) = (

𝑢2−𝑣2

(𝑢2+𝑣2)2
−2𝑢𝑣

(𝑢2+𝑣2)2

2𝑢𝑣

(𝑢2+𝑣2)2
𝑢2−𝑣2

(𝑢2+𝑣2)2

)  

 

det((𝜋2 ∘ 𝜋1
−1)′) =

(𝑢2−𝑣2)
2
+4𝑢2𝑣2

(𝑢2+𝑣2)4
=

1

(𝑢2+𝑣2)2
> 0  

 
and finite since 𝜋1

−1(0, 0) = (0, 0, −1), which is not part of the domain 

of 𝜋2. Thus we can say 𝑆2 is orientable.  
 

Note: the atlas with 𝜋1(𝑥, 𝑦, 𝑧) = (
𝑥

1−𝑧
,

𝑦

1−𝑧
) and 

 𝜋2(𝑥, 𝑦, 𝑧) = (
𝑥

1+𝑧
,

𝑦

1+𝑧
); the standard stereographic projection does not 

have:  

det((𝜋2 ∘ 𝜋1
−1)′) > 0. 


