Integration over Singular n-Chains and Stokes' Theorem- HW Problems

- 1. In each case below calculate the value of the integral by calculating $\int_{[0,1]^k} c^* \omega$.
 - a. $\iint_D \omega$ where $\omega = e^{x^2 + y^2} dx \wedge dy$ and D is the disk of radius 2 centered at the origin.
 - b. $\int_c \omega$ where $c(t) = (cos2\pi t, sin2\pi t, 2\pi t); \quad 0 \le t \le 1$, and $\omega = (x^2 + y^2)dx + xdy + z^2dz$.
 - c. $\iint_D \omega$ where $\omega = xdx \wedge dy + zdz \wedge dx$, and D is the upper unit hemisphere which is the image of $c: [0,1]^2 \to \mathbb{R}^3$, by $c(r,\theta) = (rcos 2\pi\theta, rsin 2\pi\theta, \sqrt{1-r^2})$.
- 2. Use Stokes' theorem and $\omega = -\frac{y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$ to show the unit circle, *c*, is not the boundary of any 2 chain in $\mathbb{R}^2 (0,0)$.

3. Consider the 2-form
$$\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$
 on $\mathbb{R}^3 - (0,0,0).$

- a. Show that $d\omega = 0$.
- b. Show that $\omega \neq d\eta$ for any 1-form η on $\mathbb{R}^3 (0,0,0)$. Hint: integrate ω over the unit sphere. You can assume that $c: [0,1]^2 \rightarrow S^2 \subseteq \mathbb{R}^3$ and $c^*\omega = 2\pi^2(sin\pi\varphi)d\varphi d\theta$. Make sure you explain why your argument works.