Singular n -Chains

Def. A **singular** *n*-cube in
$$
A \subseteq \mathbb{R}^n
$$
 is a continuous function:
\n
$$
c: [0,1]^n \to A
$$
\n
$$
([0,1]^n = [0,1] \times [0,1] \times ... \times [0,1], n \text{-times})
$$

Ex.
$$
c: [0, 1]^2 \to D \subseteq \mathbb{R}^2
$$
, where *D* is the unit disk $x^2 + y^2 \le 1$.

$$
c(r, \theta) = (r \cos 2\pi \theta, r \sin 2\pi \theta).
$$

Def. The standard n -cube is the identity map on $[0,1]^n$:

$$
I^n: [0,1]^n \to \mathbb{R}^n; \quad I^n(x) = x.
$$

We will consider the formal sums of singular n -cubes of the form: $3c_1 - 4c_2 + 5c_3$, where c_1, c_2, c_3 are singular *n*-cubes in A. A formal sum like this is called an n -chain in A .

Def. Let
$$
x \in [0, 1]^{n-1}
$$
. Define $I_{(i,0)}^n(x) = I^n(x_1, \ldots, x_{i-1}, 0, x_i, \ldots, x_{n-1})$

\nand $I_{(i,1)}^n(x) = I^n(x_1, \ldots, x_{i-1}, 1, x_i, \ldots, x_{n-1})$.

\n $I_{(i,0)}^n$ is called the $(i, 0)$ face and $I_{(i,1)}^n$ is called the $(i, 1)$ face.

We define the boundary of I^n by:

$$
\partial I^{n} = \sum_{i=1}^{n} \sum_{\alpha=0}^{1} (-1)^{i+\alpha} I^{n}_{(i,\alpha)}.
$$

Def. For a general singular n -cube, $c: I^n \to A$, we define the (i, α) face as:

$$
c_{(i,\alpha)}=c\circ I_{(i,\alpha)}^n.
$$

And we define the boundary of c by:

$$
\partial c = \sum_{i=1}^n \sum_{\alpha=0}^1 (-1)^{i+\alpha} c_{(i,\alpha)}.
$$

Ex. Let $c\colon [0,1]^2\to\mathbb{R}^2$ by $c(r,\theta)=(r\cos(2\pi\,\theta),r\sin(2\pi\,\theta)).$ Find $\partial c.$

We know from the previous example:

$$
I_{(1,0)}^2 = (0, \theta) \Rightarrow c_{(1,0)} = c(0, \theta) = (0, 0)
$$

\n
$$
I_{(1,1)}^2 = (1, \theta) \Rightarrow c_{(1,1)} = c(1, \theta) = (\cos 2\pi\theta, \sin 2\pi\theta)
$$

\n
$$
I_{(2,0)}^2 = (r, 0) \Rightarrow c_{(2,0)} = c(r, 0) = (r, 0)
$$

\n
$$
I_{(2,1)}^2 = (r, 1) \Rightarrow c_{(2,1)} = c(r, 1) = (r, 0).
$$

So we can write:
\n
$$
\partial c = \sum_{i=1}^{2} \sum_{\alpha=0}^{1} (-1)^{i+\alpha} c_{(i,\alpha)} = -c_{(1,0)} + c_{(1,1)} + c_{(2,0)} - c_{(2,1)}.
$$

$$
c_{(2,0)} = c_{(2,1)}
$$
 so $c_{(2,0)} - c_{(2,1)} = 0$, thus we know:

$$
\partial c = -c_{(1,0)} + c_{(1,1)} = -(0,0) \cup (\cos 2\pi\theta, \sin 2\pi\theta).
$$

Def. For an n -chain:

$$
c=\sum_{i=1}^j a_i c_i.
$$

We define ∂c by:

$$
\partial c = \partial \left(\sum_{i=1}^j a_i c_i \right) = \sum_{i=1}^j a_i (\partial c_i).
$$

Theorem: If c is an n -chain in A , then $\partial(\partial c) = 0$ or $\partial^2 = 0$.

This theorem is proved by showing that it's first true for $I^{\boldsymbol{k}}$ and then it follows for $c(I^k).$ We can see how this works for $I^2.$

We saw earlier that: $\partial I^2 = -I_{(1,0)}^2 + I_{(1,1)}^2 + I_{(2,0)}^2 - I_{(2,1)}^2$, where: $I_{(1,0)}^2 = (0, x_1)$ $I_{(1,1)}^2 = (1, x_1)$ $I_{(2,0)}^2 = (x_1, 0)$ $I_{(2,1)}^2 = (x_1, 1)$

$$
\partial(\partial I^2) = \partial \left(-I_{(1,0)}^2\right) + \partial I_{(1,1)}^2 + \partial I_{(2,0)}^2 + \partial \left(-I_{(2,1)}^2\right)
$$

= (0,0) - (0,1) + (1,1) - (1,0) + (1,0) - (0,0) + (0,1) - (1,1)
= 0.

We saw earlier for differential forms that:

$$
d^2(\omega)=0
$$

Now we see that for n -chains:

$$
\partial^2(c)=0.
$$

We also saw earlier that $d\omega = 0$ does not imply $\omega = d\eta$ (it depends on the geometry of the set $A\subseteq \mathbb{R}^n$). It's natural to ask for an n -chain if $\partial c=0$, does it imply that $c = \partial k$ for some $(n - 1)$ -chain k ?

The answer, generally, is no (and this is related to the statement about differential forms). For example, let $c: [0, 1] \rightarrow \mathbb{R}^2 - (0, 0)$ by:

$$
c(t) = (\cos 2\pi t, \sin 2\pi t)
$$

 $c(1) = c(0) = (1, 0)$, so we know $\partial c = 0$.

But there is no 2-chain k in $\mathbb{R}^2 - (0,0)$ with $\partial k = c$.