Singular *n*-Chains

Def. A singular *n*-cube in
$$A \subseteq \mathbb{R}^n$$
 is a continuous function:
 $c \colon [0, 1]^n \to A$
 $([0, 1]^n = [0, 1] \times [0, 1] \times ... \times [0, 1], n$ -times)

Ex.
$$c: [0, 1]^2 \to D \subseteq \mathbb{R}^2$$
, where D is the unit disk $x^2 + y^2 \leq 1$.
 $c(r, \theta) = (r \cos 2\pi \theta, r \sin 2\pi \theta).$

Def. The **standard** *n*-cube is the identity map on $[0, 1]^n$:

$$I^n: [0,1]^n \to \mathbb{R}^n; \quad I^n(x) = x.$$

We will consider the formal sums of singular *n*-cubes of the form: $3c_1 - 4c_2 + 5c_3$, where c_1, c_2, c_3 are singular *n*-cubes in *A*. A formal sum like this is called an *n*-chain in *A*.

Def. Let
$$x \in [0, 1]^{n-1}$$
. Define $I_{(i,0)}^n(x) = I^n(x_1, \dots, x_{i-1}, 0, x_i, \dots, x_{n-1})$
and $I_{(i,1)}^n(x) = I^n(x_1, \dots, x_{i-1}, 1, x_i, \dots, x_{n-1})$.
 $I_{(i,0)}^n$ is called the $(i, 0)$ face and $I_{(i,1)}^n$ is called the $(i, 1)$ face.

We define the boundary of I^n by:

$$\partial I^n = \sum_{i=1}^n \sum_{\alpha=0}^1 (-1)^{i+\alpha} I^n_{(i,\alpha)}.$$

Def. For a general singular *n*-cube, $c: I^n \to A$, we define the (i, α) face as:

$$c_{(i,\alpha)} = c \circ I^n_{(i,\alpha)}$$

And we define the boundary of *C* by:

$$\partial c = \sum_{i=1}^n \sum_{\alpha=0}^1 (-1)^{i+\alpha} c_{(i,\alpha)}$$

Ex. Let $c: [0,1]^2 \to \mathbb{R}^2$ by $c(r,\theta) = (r\cos(2\pi\theta), r\sin(2\pi\theta))$. Find ∂c .

We know from the previous example:

$$\begin{split} I_{(1,0)}^2 &= (0,\theta) & \Rightarrow c_{(1,0)} = c(0,\theta) = (0,0) \\ I_{(1,1)}^2 &= (1,\theta) & \Rightarrow c_{(1,1)} = c(1,\theta) = (\cos 2\pi\theta, \sin 2\pi\theta) \\ I_{(2,0)}^2 &= (r,0) & \Rightarrow c_{(2,0)} = c(r,0) = (r,0) \\ I_{(2,1)}^2 &= (r,1) & \Rightarrow c_{(2,1)} = c(r,1) = (r,0). \end{split}$$

So we can write:

$$\partial c = \sum_{i=1}^{2} \sum_{\alpha=0}^{1} (-1)^{i+\alpha} c_{(i,\alpha)} = -c_{(1,0)} + c_{(1,1)} + c_{(2,0)} - c_{(2,1)}.$$

$$c_{(2,0)} = c_{(2,1)}$$
 so $c_{(2,0)} - c_{(2,1)} = 0$, thus we know:
 $\partial c = -c_{(1,0)} + c_{(1,1)} = -(0,0) \cup (\cos 2\pi\theta, \sin 2\pi\theta).$

Def. For an *n*-chain:

$$c=\sum_{i=1}^j a_i c_i \, .$$

We define ∂c by:

$$\partial c = \partial \left(\sum_{i=1}^{j} a_i c_i \right) = \sum_{i=1}^{j} a_i (\partial c_i).$$

Theorem: If *c* is an *n*-chain in *A*, then $\partial(\partial c) = 0$ or $\partial^2 = 0$.

This theorem is proved by showing that it's first true for I^k and then it follows for $c(I^k)$. We can see how this works for I^2 .

We saw earlier that: $\partial I^2 = -I_{(1,0)}^2 + I_{(1,1)}^2 + I_{(2,0)}^2 - I_{(2,1)}^2$, where: $I_{(1,0)}^2 = (0, x_1)$ $I_{(1,1)}^2 = (1, x_1)$ $I_{(2,0)}^2 = (x_1, 0)$ $I_{(2,1)}^2 = (x_1, 1)$

$$\begin{aligned} \partial(\partial I^2) &= \partial \left(-I_{(1,0)}^2 \right) + \partial I_{(1,1)}^2 + \partial I_{(2,0)}^2 + \partial \left(-I_{(2,1)}^2 \right) \\ &= (0,0) - (0,1) + (1,1) - (1,0) + (1,0) - (0,0) + (0,1) - (1,1) \\ &= 0. \end{aligned}$$

We saw earlier for differential forms that:

$$d^2(\omega)=0$$

Now we see that for *n*-chains:

$$\partial^2(c)=0.$$

We also saw earlier that $d\omega = 0$ does not imply $\omega = d\eta$ (it depends on the geometry of the set $A \subseteq \mathbb{R}^n$). It's natural to ask for an *n*-chain if $\partial c = 0$, does it imply that $c = \partial k$ for some (n - 1)-chain k?

The answer, generally, is no (and this is related to the statement about differential forms). For example, let $c: [0, 1] \rightarrow \mathbb{R}^2 - (0, 0)$ by:

$$c(t) = (\cos 2\pi t \, , \sin 2\pi t)$$

$$c(1) = c(0) = (1, 0)$$
, so we know $\partial c = 0$.

But there is no 2-chain k in $\mathbb{R}^2 - (0, 0)$ with $\partial k = c$.