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Singular 𝑛-Chains 
 
Def.  A singular 𝒏-cube in 𝐴 ⊆ ℝ𝑛 is a continuous function: 

𝑐: [0, 1]𝑛 → 𝐴 
 

([0, 1]𝑛 = [0, 1]  × [0, 1]  × … ×  [0, 1], 𝑛-times) 
 
 
Ex.  𝑐: [0, 1]2 → 𝐷 ⊆ ℝ2, where 𝐷 is the unit disk 𝑥2 + 𝑦2 ≤ 1. 
 

𝑐(𝑟, 𝜃) = (𝑟 cos 2𝜋 𝜃, 𝑟 sin 2𝜋 𝜃). 
 
 
Def.  The standard 𝒏-cube is the identity map on [0, 1]𝑛: 
 

𝐼𝑛: [0, 1]𝑛 → ℝ𝑛;      𝐼𝑛(𝑥) = 𝑥.  
 
 
We will consider the formal sums of singular 𝑛-cubes of the form: 

3𝑐1 − 4𝑐2 + 5𝑐3, where 𝑐1, 𝑐2, 𝑐3 are singular 𝑛-cubes in 𝐴.  A formal sum like 

this is called an 𝒏-chain in 𝐴. 
 
 
Def.  Let 𝑥 ∈ [0, 1]𝑛−1.  Define   𝐼(𝑖,0)

𝑛 (𝑥) = 𝐼𝑛(𝑥1, … , 𝑥𝑖−1, 0, 𝑥𝑖, … , 𝑥𝑛−1)     

 and  𝐼(𝑖,1)
𝑛 (𝑥) = 𝐼𝑛(𝑥1, … , 𝑥𝑖−1, 1, 𝑥𝑖, … , 𝑥𝑛−1). 

 

𝐼(𝑖,0)
𝑛  is called the (𝒊, 𝟎) face and 𝐼(𝑖,1)

𝑛  is called the (𝒊, 𝟏) face. 

 
 
We define the boundary of 𝐼𝑛 by: 
 
 

𝜕𝐼𝑛 = ∑ ∑(−1)𝑖+𝛼  𝐼(𝑖,𝛼)
𝑛

1

𝛼=0

𝑛

𝑖=1

 . 
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Ex.  For 𝐼2 = [0, 1]2: 
 

𝐼(1,0)
2 = 𝐼2(0, 𝑥1) = (0, 𝑥1) 

𝐼(1,1)
2 = 𝐼2(1, 𝑥1) = (1, 𝑥1) 

𝐼(2,0)
2 = 𝐼2(𝑥1, 0) = (𝑥1, 0) 

𝐼(2,1)
2 = 𝐼2(𝑥1, 1) = (𝑥1, 1) 

 

 

 

𝜕𝐼2 = ∑ ∑(−1)𝑖+𝛼  𝐼(𝑖,𝛼)
2

1

𝛼=0

2

𝑖=1

= −𝐼(1,0)
2 + 𝐼(1,1)

2 + 𝐼(2,0)
2 − 𝐼(2,1)

2  

 
 
 
 
 
Def.  For a general singular 𝑛-cube, 𝑐: 𝐼𝑛 → 𝐴, we define the (𝑖, 𝛼) face as:  
 

𝒄(𝒊,𝜶) = 𝒄 ∘ 𝑰(𝒊,𝜶)
𝒏  . 

 
 

And we define the boundary of 𝑐 by: 
 

𝝏𝒄 = ∑ ∑(−𝟏)𝒊+𝜶 𝒄(𝒊,𝜶)

𝟏

𝜶=𝟎

.

𝒏

𝒊=𝟏

 

 
 
 
 

−𝐼(1,0)
2  𝐼(1,1)

2  

𝐼(2,0)
2  

−𝐼(2,1)
2  
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Ex.  Let 𝑐: [0, 1]2 → ℝ2 by 𝑐(𝑟, 𝜃) = (𝑟 cos(2𝜋 𝜃), 𝑟 sin(2𝜋 𝜃)). Find 𝜕𝑐.  
 
 We know from the previous example: 
 

              𝐼(1,0)
2 = (0, 𝜃)        ⇒ 𝑐(1,0) = 𝑐(0, 𝜃) = (0, 0) 

              𝐼(1,1)
2 = (1, 𝜃)        ⇒ 𝑐(1,1) = 𝑐(1, 𝜃) = (cos 2𝜋𝜃 , sin 2𝜋𝜃) 

               𝐼(2,0)
2 = (𝑟, 0)        ⇒ 𝑐(2,0) = 𝑐(𝑟, 0) = (𝑟, 0) 

               𝐼(2,1)
2 = (𝑟, 1)        ⇒ 𝑐(2,1) = 𝑐(𝑟, 1) = (𝑟, 0). 

 

 So we can write: 

𝜕𝑐 = ∑ ∑(−1)𝑖+𝛼 𝑐(𝑖,𝛼)

1

𝛼=0

2

𝑖=1

= −𝑐(1,0) + 𝑐(1,1) + 𝑐(2,0) − 𝑐(2,1). 

 
 

𝑐(2,0) = 𝑐(2,1) so 𝑐(2,0) − 𝑐(2,1) = 0, thus we know: 

 
𝜕𝑐 = −𝑐(1,0) + 𝑐(1,1) = −(0, 0) ∪ (cos 2𝜋𝜃 , sin 2𝜋𝜃). 

 
 
Def.  For an 𝑛-chain: 

                                     𝑐 = ∑ 𝑎𝑖𝑐𝑖

𝑗

𝑖=1

 . 

We define 𝝏𝒄 by: 

𝝏𝒄 = 𝝏 (∑ 𝒂𝒊𝒄𝒊

𝒋

𝒊=𝟏

) = ∑ 𝒂𝒊(𝝏𝒄𝒊)

𝒋

𝒊=𝟏

. 
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Theorem: If 𝑐 is an 𝑛-chain in 𝐴, then 𝜕(𝜕𝑐) = 0 or 𝜕2 = 0.  
 
 

This theorem is proved by showing that it’s first true for 𝐼𝑘 and then it 
follows for 𝑐(𝐼𝑘). We can see how this works for 𝐼2.  

 

We saw earlier that: 𝜕𝐼2 = −𝐼(1,0)
2 + 𝐼(1,1)

2 + 𝐼(2,0)
2 − 𝐼(2,1)

2 , where: 
 

𝐼(1,0)
2 = (0, 𝑥1) 

𝐼(1,1)
2 = (1, 𝑥1) 

𝐼(2,0)
2 = (𝑥1, 0) 

𝐼(2,1)
2 = (𝑥1, 1) 

  
 

𝜕(𝜕𝐼2) = 𝜕(−𝐼(1,0)
2 ) + 𝜕𝐼(1,1)

2 + 𝜕𝐼(2,0)
2 + 𝜕(−𝐼(2,1)

2 )  

 
      = (0, 0) − (0, 1) + (1, 1) − (1, 0) + (1, 0) − (0, 0) + (0, 1) − (1, 1) 

 
      = 0.  
 
 
We saw earlier for differential forms that:  

𝑑2(𝜔) = 0 
 

Now we see that for 𝑛-chains: 

𝜕2(𝑐) = 0. 
 
We also saw earlier that 𝑑𝜔 = 0 does not imply 𝜔 = 𝑑𝜂 (it depends on the 

geometry of the set 𝐴 ⊆ ℝ𝑛). It’s natural to ask for an 𝑛-chain if 𝜕𝑐 = 0, does 

it imply that 𝑐 = 𝜕𝑘 for some (𝑛 − 1)-chain 𝑘? 
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The answer, generally, is no (and this is related to the statement about 

differential forms). For example, let 𝑐: [0, 1] → ℝ2 − (0, 0) by: 
 

𝑐(𝑡) = (cos 2𝜋𝑡 , sin 2𝜋𝑡) 
 
                           𝑐(1) = 𝑐(0) = (1, 0),   so we know 𝜕𝑐 = 0. 
 
But there is no 2-chain 𝑘 in ℝ2 − (0, 0) with 𝜕𝑘 = 𝑐. 


