Closed and Exact Differential Forms

Def. A differential k-form ω is called **closed** if $d\omega = 0$.

Ex. Let $\omega = (x^2 + y^2)dx + 2xydy$. Show that ω is closed.

$$
d\omega = d[(x^2 + y^2)dx + 2xydy]
$$

= $d[(x^2 + y^2)dx] + d[2xydy]$
= $d(x^2 + y^2) \wedge dx + d(2xy) \wedge dy$
= $\left(\frac{\partial}{\partial x}(x^2 + y^2)dx + \frac{\partial}{\partial y}(x^2 + y^2)dy\right) \wedge dx$
+ $\left(\frac{\partial}{\partial x}(2xy)dx + \frac{\partial}{\partial y}(2xy)dy\right) \wedge dy$
= $(2xdx + 2ydy) \wedge dx + (2ydx + 2xdy) \wedge dy$
= $2ydy \wedge dx + 2ydx \wedge dy = 0.$

Ex. Show that any 2 form on \mathbb{R}^2 is closed.

Any 2 form on \mathbb{R}^2 , ω , can be written as $\omega = f(x, y) dx \wedge dy$.

$$
d\omega = d(f(x, y)dx \wedge dy)
$$

= $df \wedge dx \wedge dy$
= $\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right) \wedge dx \wedge dy$
= $\frac{\partial f}{\partial x}dx \wedge dx \wedge dy + \frac{\partial f}{\partial y}dy \wedge dx \wedge dy = 0.$

Ex. Show that $\omega = dx_i \wedge dx_j$ is closed as a 2 form on $\mathbb{R}^n.$

$$
d\omega = d\big(dx_i \wedge dx_j\big) = d(dx_i) \wedge dx_j + (-1)^1 dx_i \wedge d\big(dx_j\big) = 0.
$$

By induction one can show that $\;\;\omega = dx_{i_1}\wedge dx_{i_2}\wedge...\wedge dx_{i_k}$ is closed on \mathbb{R}^n .

Def. A differential k-form ω is called **exact** if $\omega = d\eta$ for some $(k - 1)$ -form η .

Ex. Show that $\omega = (x^2 + y^2)dx + 2xydy$ is exact on \mathbb{R}^2 .

So we have to show we can find a real valued function f on \mathbb{R}^2 such that $df = \omega = (x^2 + y^2)dx + 2xydy.$

However, we know that:

$$
df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy.
$$

So we have to find a function f such that:

$$
df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = (x^2 + y^2) dx + 2xy dy.
$$

Thus we need to have:

$$
\frac{\partial f}{\partial x} = x^2 + y^2
$$

$$
\frac{\partial f}{\partial y} = 2xy.
$$

We solve these 2 equations as was done in second year calculus.

$$
f(x,y) = \int (x^2 + y^2) dx = \frac{x^3}{3} + xy^2 + g(y).
$$

Now differentiate this equation with respect to y .

$$
\frac{\partial f}{\partial y} = 2xy + g'(y).
$$

But we also know that $\frac{\partial f}{\partial y} = 2xy$, so $2xy + g'(y) = 2xy.$

Thus $g'(y) = 0$ and $g(y) = c$.

Thus if
$$
f(x, y) = \frac{x^3}{3} + xy^2 + c
$$
, then $df = \omega = (x^2 + y^2)dx + 2xydy$.

Notice that if ω is exact (i.e. $\omega = d\eta$), then it must be closed since:

$$
d\omega=d(d\eta)=0
$$

So exact \Rightarrow closed. However, if ω is closed does that imply it's exact? This is actually a very deep question. The answer depends on the set that ω is defined on.

Ex. Suppose $\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$, is a 1-form defined on \mathbb{R}^2 – (0,0). Show ω is closed.

$$
d\omega = d\left(\frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy\right)
$$

= $-d\left(\frac{y}{x^2 + y^2} dx\right) + d\left(\frac{x}{x^2 + y^2} dy\right)$
= $-d\left(\frac{y}{x^2 + y^2}\right) \wedge dx + d\left(\frac{x}{x^2 + y^2}\right) \wedge dy$
= $- \left[\frac{(x^2 + y^2) - y(2y)}{(x^2 + y^2)^2} dy \wedge dx\right] + \left[\frac{(x^2 + y^2) - x(2x)}{(x^2 + y^2)^2} dx \wedge dy\right]$
= $\frac{x^2 - y^2}{(x^2 + y^2)^2} dx \wedge dy + \frac{y^2 - x^2}{(x^2 + y^2)^2} dx \wedge dy = 0.$

Is this ω exact? That is, is there a smooth function (or $\mathcal{C}^{\mathbf{1}}$) such that $df = \omega$?

Suppose there is a smooth function, f, on $\mathbb{R}^2 - (0,0)$ such that $\omega = df$

We can transform
$$
\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy
$$
 into polar coordinates by:
\n $g: \mathbb{R}^2 \to \mathbb{R}^2$
\n $(r, \theta) \to (r \cos \theta, r \sin \theta)$
\n $x(r, \theta) = r \cos \theta$
\n $y(r, \theta) = r \sin \theta$

Now let's calculate:

$$
g^* \left(\frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \right)
$$

= $\frac{-y}{x^2 + y^2} \circ g \left(\frac{\partial x}{\partial r} dr + \frac{\partial x}{\partial \theta} d\theta \right) + \frac{x}{x^2 + y^2} \circ g \left(\frac{\partial y}{\partial r} dr + \frac{\partial y}{\partial \theta} d\theta \right)$
= $\frac{-r \sin \theta}{r^2} (\cos \theta dr - r \sin \theta d\theta) + \frac{r \cos \theta}{r^2} (\sin \theta dr + r \cos \theta d\theta)$
= $d\theta$

So it looks like $\omega = d\theta$, but θ is not continuous on $\mathbb{R}^2 - (0,0)$, as: lim $\theta \rightarrow 2\pi$ $\theta = 2\pi \neq 0$

Furthermore, if there was a smooth function, f, on $\mathbb{R}^2 - (0,0)$ such that $df = \omega$, then:

$$
df = d\theta
$$

$$
d(f - \theta) = 0 \implies f = \theta + \text{constant}
$$

Hence f can't be continuous on $\mathbb{R}^2 - (0,0)$ because θ isn't. Thus, there is no smooth (or C^1) function, f , on $\mathbb{R}^2-(0,0)$ with $df=\omega.$ So ω is closed but not exact.

However, on some subsets of \mathbb{R}^n , $d\omega=0$ does imply $\omega=d\eta$, for any closed k -form ω .

Theorem (Poincare's Lemma): If $A\subseteq \mathbb{R}^n$ is an open convex region,

then every closed form on A is exact.

One way to prove this is to observe that if $\omega = \sum_{i=1}^n \omega_i dx_i$ is a 1-form and $\omega = df = \sum_{i=1}^n \frac{\partial f}{\partial x_i}$ $\int_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$ $\frac{n}{i=1} \frac{\partial f}{\partial x_i} dx_i$ (and we assume $f(0) = 0$), then we have:

$$
f(x) = \int_0^1 \frac{d}{dt} f(tx) dt = f(x) - f(0).
$$

If $u = tx$, then by the chain rule:

$$
= \int_0^1 \sum_{i=1}^n \left(\frac{\partial}{\partial u_i} f(tx) \right) (x_i) dt
$$

$$
= \int_0^1 \sum_{i=1}^n \left(\omega_i(tx) \right) x_i dt.
$$

So in order to find f given ω , we should look at:

$$
I\omega(x) = \int_0^1 \sum_{i=1}^n (\omega_i(tx)) x_i dt.
$$

For a k -form (instead of a 1-form) we get:

$$
\omega = \sum_{i_1 < \dots < i_k} \omega_{i_1}, \dots, i_k \, dx_{i_1} \wedge \dots \wedge dx_{i_k} \quad \text{and}
$$

$$
I\omega(x) = \sum_{i_1 < \dots < i_k} \sum_{\alpha=1}^k (-1)^{\alpha-1} \left(\int_0^1 t^{k-1} \omega_{i_1, \dots, i_k}(tx) dt \right) x_{i_\alpha} dx_{i_1} \wedge \dots \wedge \widehat{dx_{i_\alpha}} \wedge \dots \wedge dx_{i_k}
$$

where $\widehat{dx_{l}}_{\alpha}$ means omit $dx_{l}^{}_{\alpha}.$

Notice that I takes a k-form and gives us a $k-1$ form. It also has the property that $I(0) = 0$. Through a very messy calculation one can show that:

$$
\omega = I(d\omega) + d(I\omega)
$$

Thus, if $d\omega = 0$, since $I(0) = 0$ we have: $\omega = d(I\omega)$ and ω is exact.

Let $A\subseteq \mathbb{R}^n$ be an open set. Let $\Omega^k(A)$ be the vector space of k -forms on $A.$ We can create a sequence of linear maps between vector spaces by:

$$
\Omega^0(A) \stackrel{d}{\rightarrow} \Omega^1(A) \stackrel{d}{\rightarrow} \Omega^2(A) \stackrel{d}{\rightarrow} \dots \stackrel{d}{\rightarrow} \Omega^n(A).
$$

If $\omega \in \Omega^k(A)$, then ω is closed if ω is in the kernel of: $d \colon \Omega^k(A) \to \Omega^{k+1}(A)$

and ω is exact if it's in the image of:

$$
d\colon \Omega^{k-1}(A) \to \Omega^k(A).
$$

Since $d^{\,2}(\eta)=0$ for any η , the image of d : $\Omega^{k-1}(A)\rightarrow \Omega^{k}(A)$ is contained in the kernel of $d\!:\Omega^k(A)\to\Omega^{k+1}(A).$

We can create a group, called the k^{th} de Rham cohomology group, $H^k_{dR}(A)$, by: $H_{dR}^k(A) =$ $\ker(d; \Omega^k(A) \to \Omega^{k+1}(A))$ $Im(d: \Omega^{k-1}(A) \rightarrow \Omega^k(A))$.

So an element of $H^k_{dR}(A)$ is a closed k -form on A . Two elements $(\alpha_1, \alpha_2 \in H^k_{dR}(A))$ are considered the same (i.e. they are in the same equivalence class) if they differ by an exact k -form:

$$
\alpha_1 = \alpha_2 + d\eta \quad ; \quad \eta \text{ a } k\text{-1 form}
$$

These groups are topological invariants. Thus, if A_1 is homeomorphic to A_2 , then their de Rham cohomology groups will be the same.