Closed and Exact Differential Forms

Def. A differential *k*-form ω is called **closed** if $d\omega = 0$.

Ex. Let $\omega = (x^2 + y^2)dx + 2xydy$. Show that ω is closed.

$$d\omega = d[(x^{2} + y^{2})dx + 2xydy]$$

= $d[(x^{2} + y^{2})dx] + d[2xydy]$
= $d(x^{2} + y^{2}) \wedge dx + d(2xy) \wedge dy$
= $\left(\frac{\partial}{\partial x}(x^{2} + y^{2})dx + \frac{\partial}{\partial y}(x^{2} + y^{2})dy\right) \wedge dx$
+ $\left(\frac{\partial}{\partial x}(2xy)dx + \frac{\partial}{\partial y}(2xy)dy\right) \wedge dy$
= $(2xdx + 2ydy) \wedge dx + (2ydx + 2xdy) \wedge dy$
= $2ydy \wedge dx + 2ydx \wedge dy = 0.$

Ex. Show that any 2 form on \mathbb{R}^2 is closed.

Any 2 form on \mathbb{R}^2 , ω , can be written as $\omega = f(x, y)dx \wedge dy$.

$$d\omega = d(f(x, y)dx \wedge dy)$$

= $df \wedge dx \wedge dy$
= $(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy) \wedge dx \wedge dy$
= $\frac{\partial f}{\partial x}dx \wedge dx \wedge dy + \frac{\partial f}{\partial y}dy \wedge dx \wedge dy = 0.$

Ex. Show that $\omega = dx_i \wedge dx_j$ is closed as a 2 form on \mathbb{R}^n .

$$d\omega = d(dx_i \wedge dx_j) = d(dx_i) \wedge dx_j + (-1)^1 dx_i \wedge d(dx_j) = 0.$$

By induction one can show that $\omega = dx_{i_1} \wedge dx_{i_2} \wedge ... \wedge dx_{i_k}$ is closed on \mathbb{R}^n .

Def. A differential k-form ω is called **exact** if $\omega = d\eta$ for some (k-1)-form η .

Ex. Show that $\omega = (x^2 + y^2)dx + 2xydy$ is exact on \mathbb{R}^2 .

So we have to show we can find a real valued function f on \mathbb{R}^2 such that $df = \omega = (x^2 + y^2)dx + 2xydy$.

However, we know that:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy.$$

So we have to find a function f such that:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = (x^2 + y^2)dx + 2xydy$$

Thus we need to have:

$$\frac{\partial f}{\partial x} = x^2 + y^2$$
$$\frac{\partial f}{\partial y} = 2xy.$$

We solve these 2 equations as was done in second year calculus.

$$f(x,y) = \int (x^2 + y^2) dx = \frac{x^3}{3} + xy^2 + g(y).$$

Now differentiate this equation with respect to y.

$$\frac{\partial f}{\partial y} = 2xy + g'(y).$$

But we also know that $\frac{\partial f}{\partial y} = 2xy$, so 2xy + g'(y) = 2xy.

Thus g'(y) = 0 and g(y) = c.

Thus if
$$f(x, y) = \frac{x^3}{3} + xy^2 + c$$
, then $df = \omega = (x^2 + y^2)dx + 2xydy$.

Notice that if ω is exact (i.e. $\omega = d\eta$), then it must be closed since:

$$d\omega = d(d\eta) = 0$$

So exact \Rightarrow closed. However, if ω is closed does that imply it's exact? This is actually a very deep question. The answer depends on the set that ω is defined on.

Ex. Suppose $\omega = \frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$, is a 1-form defined on $\mathbb{R}^2 - (0,0)$. Show ω is closed.

$$d\omega = d\left(\frac{-y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy\right)$$

= $-d\left(\frac{y}{x^2 + y^2}dx\right) + d\left(\frac{x}{x^2 + y^2}dy\right)$
= $-d\left(\frac{y}{x^2 + y^2}\right) \wedge dx + d\left(\frac{x}{x^2 + y^2}\right) \wedge dy$
= $-\left[\frac{(x^2 + y^2) - y(2y)}{(x^2 + y^2)^2}dy \wedge dx\right] + \left[\frac{(x^2 + y^2) - x(2x)}{(x^2 + y^2)^2}dx \wedge dy\right]$
= $\frac{x^2 - y^2}{(x^2 + y^2)^2}dx \wedge dy + \frac{y^2 - x^2}{(x^2 + y^2)^2}dx \wedge dy = 0.$

Is this ω exact? That is, is there a smooth function (or C^1) such that $df = \omega$?

Suppose there is a smooth function, f , on $\mathbb{R}^2 - (0,0)$ such that $\omega = df$

We can transform
$$\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$
 into polar coordinates by:
 $g: \mathbb{R}^2 \to \mathbb{R}^2$
 $(r, \theta) \to (r \cos \theta, r \sin \theta)$
 $x(r, \theta) = r \cos \theta$
 $y(r, \theta) = r \sin \theta$

Now let's calculate:

$$g^* \left(\frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \right)$$

= $\frac{-y}{x^2 + y^2} \circ g \left(\frac{\partial x}{\partial r} dr + \frac{\partial x}{\partial \theta} d\theta \right) + \frac{x}{x^2 + y^2} \circ g \left(\frac{\partial y}{\partial r} dr + \frac{\partial y}{\partial \theta} d\theta \right)$
= $\frac{-r \sin \theta}{r^2} (\cos \theta \, dr - r \sin \theta \, d\theta) + \frac{r \cos \theta}{r^2} (\sin \theta \, dr + r \cos \theta \, d\theta)$
= $d\theta$

So it looks like $\omega = d\theta$, but θ is not continuous on $\mathbb{R}^2 - (0,0)$, as: $\lim_{\theta \to 2\pi} \theta = 2\pi \neq 0$

Furthermore, if there was a smooth function, f, on $\mathbb{R}^2 - (0,0)$ such that $df = \omega$, then:

$$df = d\theta$$

$$d(f - \theta) = 0 \implies f = \theta + \text{constant}$$

Hence f can't be continuous on $\mathbb{R}^2 - (0,0)$ because θ isn't. Thus, there is no smooth (or C^1) function, f, on $\mathbb{R}^2 - (0,0)$ with $df = \omega$. So ω is closed but not exact.

However, on some subsets of \mathbb{R}^n , $d\omega = 0$ does imply $\omega = d\eta$, for any closed k-form ω .

Theorem (Poincare's Lemma): If $A \subseteq \mathbb{R}^n$ is an open convex region,

then every closed form on A is exact.

One way to prove this is to observe that if $\omega = \sum_{i=1}^{n} \omega_i dx_i$ is a 1-form and $\omega = df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$ (and we assume f(0) = 0), then we have:

$$f(x) = \int_0^1 \frac{d}{dt} f(tx) dt = f(x) - f(0).$$

If u = tx, then by the chain rule:

$$= \int_0^1 \sum_{i=1}^n \left(\frac{\partial}{\partial u_i} f(tx)\right) (x_i) dt$$
$$= \int_0^1 \sum_{i=1}^n (\omega_i(tx)) x_i dt.$$

So in order to find f given ω , we should look at:

$$I\omega(x) = \int_0^1 \sum_{i=1}^n (\omega_i(tx)) x_i dt.$$

For a k-form (instead of a 1-form) we get:

$$\omega = \sum_{i_1 < \cdots < i_k} \omega_{i_1}, \dots, i_k \ dx_{i_1} \wedge \dots \wedge dx_{i_k} \quad \text{and} \quad$$

$$I\omega(x) = \sum_{i_1 < \dots < i_k} \sum_{\alpha=1}^k (-1)^{\alpha-1} \left(\int_0^1 t^{k-1} \omega_{i_1} \dots \omega_{i_k}(tx) dt \right) x_{i_\alpha} dx_{i_1} \wedge \dots \wedge \widehat{dx_{i_\alpha}} \wedge \dots \wedge dx_{i_k}$$

where $\widehat{dx_{i_{\alpha}}}$ means omit $dx_{i_{\alpha}}$.

Notice that I takes a k-form and gives us a k-1 form. It also has the property that I(0) = 0. Through a very messy calculation one can show that:

$$\omega = I(d\omega) + d(I\omega)$$

Thus, if $d\omega = 0$, since I(0) = 0 we have: $\omega = d(I\omega)$ and ω is exact.

Let $A \subseteq \mathbb{R}^n$ be an open set. Let $\Omega^k(A)$ be the vector space of k-forms on A. We can create a sequence of linear maps between vector spaces by:

$$\Omega^{0}(A) \xrightarrow{d} \Omega^{1}(A) \xrightarrow{d} \Omega^{2}(A) \xrightarrow{d} \dots \xrightarrow{d} \Omega^{n}(A)$$

If $\omega \in \Omega^k(A)$, then ω is closed if ω is in the kernel of: $d: \Omega^k(A) \to \Omega^{k+1}(A)$

and ω is exact if it's in the image of:

$$d: \Omega^{k-1}(A) \to \Omega^k(A).$$

Since $d^2(\eta) = 0$ for any η , the image of $d: \Omega^{k-1}(A) \to \Omega^k(A)$ is contained in the kernel of $d: \Omega^k(A) \to \Omega^{k+1}(A)$.

We can create a group, called the k^{th} de Rham cohomology group, $H^k_{dR}(A)$, by: $H^k_{dR}(A) = \frac{\ker(d:\Omega^k(A) \to \Omega^{k+1}(A))}{\operatorname{Im}(d:\Omega^{k-1}(A) \to \Omega^k(A))}.$

So an element of $H_{dR}^k(A)$ is a closed k-form on A. Two elements $(\alpha_1, \alpha_2 \in H_{dR}^k(A))$ are considered the same (i.e. they are in the same equivalence class) if they differ by an exact k-form:

$$lpha_1=lpha_2+d\eta$$
 ; η a k -1 form

These groups are topological invariants. Thus, if A_1 is homeomorphic to A_2 , then their de Rham cohomology groups will be the same.