Closed and Exact Differential Forms-HW Problems

- 1. Let *F* be a vector field on \mathbb{R}^3 . Thus $F(x, y, z) = (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))$. Define the following differential forms based on *F*: $\omega_1(F) = F_1 dx + F_2 dy + F_3 dz$ and $\omega_2(F) = F_1 dy \wedge dz + F_2 dz \wedge dx + F_3 dx \wedge dy$. a. Suppose that F = grad(f). Show that $\omega_1(gradf) = df$. b. Show for any smooth vector field *F*, $d(\omega_1(F)) = \omega_2(curl(F))$.
 - c. Show for any smooth vector field F, $d(\omega_2(F)) = Div(F)dx \wedge dy \wedge dz$.
 - d. Use the earlier parts to show that curl(grad(f)) = 0and div(curl(F)) = 0.
 - e. If F is a smooth vector field on a convex set A in \mathbb{R}^3 and curl(F) = 0, show that F = grad(f) for some smooth function on A. Similarly, show if div(F) = 0, then F = curl(G) for some smooth vector field G.
- 2. Let ω and η be k and l forms on \mathbb{R}^n .
 - a. Show if ω and η are closed then so is $\omega \wedge \eta$.
 - b. Show if ω and η are exact then so is $\omega \wedge \eta$.
- 3. Prove that any n + 1 form on \mathbb{R}^n is 0.

- 4. Let $\omega = (1 + ye^{xy})dx + (2y + xe^{xy})dy$ be a 1-form on \mathbb{R}^2 . a. Show $d\omega = 0$.
 - b. Find all functions f(x, y) such that $\omega = df$. Notice that f(x, y) is a solution to the differential equation:

$$(1+ye^{xy})+(2y+xe^{xy})\left(\frac{dy}{dx}\right)=0.$$