Functions on \mathbb{R}^n - HW Problems

- 1. Prove that $|a b| \le |a| + |b|$ for all $a, b \in \mathbb{R}$.
- 2. Prove that $||a| |b|| \le |a b|$ for all $a, b \in \mathbb{R}$.
- 3. Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ by

 $f(x_1, ..., x_n) = (f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$. Give an ϵ/δ proof f is continuous at $a \in A$ if and only if $f_i(x)$, $1 \le i \le m$ is continuous at a.

4. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Give an ϵ/δ proof that T is continuous at any point $a \in \mathbb{R}^n$. Hint: Use the fact that there exists an $M \in \mathbb{R}$ such that $|T(a)| \leq M|a|$ for all $a \in \mathbb{R}^n$.

5. Give an ϵ/δ proof that if $f: \mathbb{R}^n \to \mathbb{R}^n$, then $\lim_{x \to a} |f(x)| = 0$ if and only if $\lim_{x \to a} |f_i(x)| = 0$, where $f(x) = (f_1(x), \dots, f_n(x))$.

6. Let $f: \mathbb{R}^n \to \mathbb{R}^n$. Give an ϵ/δ proof that if f(x) is continuous at x = a then |f(x)| is continuous at Hint: Use $||x| - |y|| \le |x - y|$.