We are going to study functions where the domain is a subset of the real numbers and the range is points in \mathbb{R}^3 , i.e. a vectors. As we saw earlier these are called vector valued functions. You've already seen this with parametric equations.

Ex. $x = \cos t$ This is really \vec{r} : $\mathbb{R} \to \mathbb{R}^2$, $t \to (\cos t$, $\sin t$), so we $y = \sin t$ could think of this as a vector valued function in \mathbb{R}^2 , $\vec{r}(t) = \langle \cos t, \sin t \rangle$.

In \mathbb{R}^3 we will represent a vector valued function by:

$$
\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}.
$$

Ex. Let $\vec{r}(t) = < t^2$, $\sqrt{t^2-9}$, $\ln t >$, find the domain of \vec{r} .

The domain is all values t where $\vec{r}(t)$ is defined:

The domain of t^2 is all real numbers, The domain of $\sqrt{t^2-9}$ is $|t|\geq 3$, The domain of $\ln t$ is $t > 0$. So the domain of \vec{r} is the intersection of these 3 sets, $t \geq 3$ (i.e. [3, ∞)). Def. If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, then:

$$
\lim_{t\to a}\vec{r}\left(t\right)=\langle\lim_{t\to a}f\left(t\right),\ \lim_{t\to a}g\left(t\right),\ \lim_{t\to a}h\left(t\right)>
$$

(provided the limits of the components exist).

Def. $\vec{r}(t)$ is **continuous at** $t = a$ if \lim $t \rightarrow a$ $\vec{r}\left(t\right)=\vec{r}(a)$ (i.e. it's continuous if all of the components are continuous.).

We can think of this vector valued function on a subset of $\mathbb R$ as a curve in $\mathbb R^3$ defined by:

$$
\vec{r}(t) = \langle f(t), g(t), h(t) \rangle
$$

$$
x = f(t)
$$

$$
y = g(t)
$$

$$
z = h(t).
$$

Ex. Describe the curve defined by: $\vec{r}(t) = 3 - t$, $2t + 1$, $-3t >$.

Ex. Sketch the curve given by $x = -\cos t$, $y = 3\sin t$; $0 \le t \le 2\pi$.

Notice that $x^2 + \left(\frac{y}{3}\right)^2$ $\frac{y}{3}$ $t^2 = \cos^2 t + \sin^2 t = 1.$

 $x^2 + \left(\frac{y}{2}\right)$ $\frac{y}{3}$ 2 $= 1$ is an ellipse with the y axis as the major axis.

The curve starts at $t = 0$, $x = -\cos(0) = -1$, $y = 3\sin(0) = 0$. As t increases from $0, y = 3sint$ is initially positive.

So the curve starts at $(-1,0)$ and then moves into the second quadrant. Therefore, this curve moves clockwise around the ellipse from $(-1,0)$.

Ex. Sketch the curve whose vector equation is:

$$
\vec{r}(t) = \langle 4 \sin t, 4 \cos t, t \rangle = 4 \sin t \vec{i} + 4 \cos t \vec{j} + t \vec{k}.
$$

Notice: $x = 4 \sin t$, $y = 4 \cos t$, $z = t$ and $x^2 + y^2 = 16 \sin^2 t + 16 \cos^2 t = 16.$

So the curve lies on the cylinder of radius 4 whose axis is the z -axis.

At $t = 0$ we're at $\vec{r}(0) = < 4 \sin 0$, $4 \cos 0$, $0 > = < 0,4,0>$.

This is a helix.

Which direction does the curve move as t increases? As t increases, $z = t$ increases, So the curve looks like:

Ex. Find a vector function for the line segment between $P(-3, 2, -1)$ and $Q(0, -2, 3)$.

Recall: $\vec{r}(t) = (1-t)\vec{r}_0 + t\vec{r}_1$, $0 \le t \le 1$, is a line segment between \vec{r}_0 , \vec{r}_1 . $\vec{r}(t) = (1 - t) < -3$, 2, $-1 > +t < 0$, -2 , 3 $=$ < $-3+3t$, 2 $-2t$, $-1+t$ > $+$ < 0, $-2t$, 3 t > $\vec{r}(t) = \langle -3 + 3t, 2 - 4t, -1 + 4t \rangle$; $0 \le t \le 1$

The corresponding parametric equations are:

$$
x = -3 + 3t \n y = 2 - 4t \n z = -1 + 4t.
$$
\n
$$
0 \le t \le 1
$$

 $\vec{r}'(t)$ is called the **tangent vector** for $\vec{r}(t)$, provided $\vec{r}'(t)$ exists and $\vec{r}'(t) \neq \vec{0}$ (i.e. the curve is "**regular**").

Def. The **tangent line to the curve,** C **, at point,** P , is defined to be the line through P parallel to the tangent vector $\vec{r}'(t)$.

Def. The **unit tangent vector** is: $\overrightarrow{T}(t) = \frac{\overrightarrow{r}'(t)}{|\overrightarrow{r}'(t)|}$ $\frac{\partial}{\partial \vec{r}'(t)}$.

Theorem: If
$$
\vec{r}(t) = \langle f(t), g(t), m(t) \rangle = f(t)\vec{i} + g(t)\vec{j} + m(t)\vec{k}
$$
,
where $f(t), g(t)$, and $m(t)$ are differentiable, then:
 $\vec{r}'(t) = \langle f'(t), g'(t), m'(t) \rangle = f'(t)\vec{i} + g'(t)\vec{j} + m'(t)\vec{k}$.

Proof:

$$
\begin{aligned} \vec{r}'(t) &= \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h} \\ &= \langle \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}, \lim_{h \to 0} \frac{g(t+h) - g(t)}{h}, \lim_{h \to 0} \frac{m(t+h) - m(t)}{h} \rangle \\ &= \langle f'(t), g'(t), m'(t) \rangle. \end{aligned}
$$

Ex. Find the derivative of $\vec{r}(t) = \langle t^3 \rangle$, $\ln t$, $e^{-t} >$ and the unit tangent vector at $t = 1$.

$$
\begin{aligned}\n\vec{r}'(t) &= < 3t^2, \frac{1}{t}, -e^{-t} > \\
\vec{r}'(1) &= < 3, 1, -e^{-1} > \\
\vec{T}(1) &= \frac{\vec{r}'(1)}{|\vec{r}'(1)|} = \frac{< 3, 1, -e^{-1} >}{\sqrt{3^2 + 1 + e^{-2}}} = \frac{< 3, 1, -e^{-1} >}{\sqrt{10 + e^{-2}}}, \\
&= < \frac{3}{\sqrt{10 + e^{-2}}}, \frac{1}{\sqrt{10 + e^{-2}}}, \frac{-e^{-1}}{\sqrt{10 + e^{-2}}} > .\n\end{aligned}
$$

 $(3,2)$

3

2

 $\mathbf 0$

 -1

 $\leq 1, -2 >$

 $\vec{r}'(-1) = 1, -2 >.$

Ex. Find parametric equations for the tangent line to:

$$
x = t2 + t \n y = t2 - t \n z = t + 1
$$
 at (2, 0, 2).

$$
(x, y, z) = (t^2 + t, t^2 - t, t + 1) = (2, 0, 2)
$$

So $t + 1 = 2$ and $t = 1$.

We need to find the tangent line to this curve at $t=1$.

$$
\vec{r}(t) = \langle t^2 + t, t^2 - t, t + 1 \rangle
$$

$$
\vec{r}'(t) = \langle 2t + 1, 2t - 1, 1 \rangle.
$$

At (2, 0, 2) we have:

$$
\vec{r}'(1) = \langle 3, 1, 1 \rangle.
$$

So we have a point on the line, $(2, 0, 2)$, and a direction vector, $\vec{v} = \vec{r}'(1) = 3, 1, 1 >$

Equation of tangent line:

$$
x = 2 + 3t
$$

$$
y = t
$$

$$
z = 2 + t.
$$

Ex. Suppose a particle following the path $\vec{c}(t) = < 4 \cos(\pi t)$, $\sin(\pi t)$, $t^2 >$ flies off along the tangent line at $t_0 = 1$. Compute the position at $t_1 = 3$.

At $t_0 = 1$ the position of the particle is $\vec{c}(1) = < 4 \cos \pi$, $\sin \pi$, $1^2 > = < -4.01$.

The tangent vector at $t_0 = 1$ is given by:

 $\vec{c}'(t) = < -4\pi \sin(\pi t)$, $\pi \cos(\pi t)$, $2t >$ $\vec{c}'(1) = <0, -\pi, 2>$.

Thus the vector equation of the tangent line at $t = 1$ is:

Notice that at $t = 1$, $s = 0$. Thus to find the position of the particle at $t = 3$ we need to substitute $s = 2$ into the equation of the tangent line.

Position of particle at $t = 3$, i.e., when $s = 2$: l $\vec{l}(2) = < -4, -2\pi, 5 >$.

Theorem: If $\vec{u}(t)$, $\vec{v}(t)$ different vector functions, c a constant, and $f(t)$ is a differentiable real valued function, then:

1.
$$
\frac{d}{dt}(\vec{u}(t) + \vec{v}(t)) = \frac{d\vec{u}}{dt} + \frac{d\vec{v}}{dt} = \vec{u}'(t) + \vec{v}'(t)
$$

$$
2. \ \frac{d}{dt}\big(c\vec{u}(t)\big) = c\frac{d\vec{u}}{dt} = c\vec{u}'(t)
$$

$$
3. \frac{d}{dt}\big(f(t)\vec{u}(t)\big) = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)
$$

4.
$$
\frac{d}{dt}(\vec{u}(t)\cdot\vec{v}(t)) = \vec{u}'(t)\cdot\vec{v}(t) + \vec{u}(t)\cdot\vec{v}'(t)
$$

5.
$$
\frac{d}{dt}(\vec{u}(t) \times \vec{v}(t)) = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)
$$

6.
$$
\frac{d}{dt}(\vec{u}(f(t))) = f'(t)\,\vec{u}'(f(t))
$$
 chain rule.

Proof of #4:

$$
\vec{u}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle; \quad \vec{v}(t) = \langle g_1(t), g_2(t), g_3(t) \rangle
$$

$$
\vec{u}(t)\cdot \vec{v}(t) = f_1(t)g_1(t) + f_2(t)g_2(t) + f_3(t)g_3(t)
$$

$$
\frac{d}{dt}(\vec{u}(t) \cdot \vec{v}(t)) = f_1(t)g'_1(t) + f'_1(t)g_1(t) + f'_2(t)g_2(t) +\nf_2(t)g'_2(t) + f'_3(t)g_3(t) + f_3(t)g'_3(t)\n= \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t).
$$