We are going to study functions where the domain is a subset of the real numbers and the range is points in \mathbb{R}^3 , i.e. a vectors. As we saw earlier these are called vector valued functions. You've already seen this with parametric equations.

Ex. $x = \cos t$ This is really $\vec{r} \colon \mathbb{R} \to \mathbb{R}^2$, $t \to (\cos t, \sin t)$, so we could think of this as a vector valued function in \mathbb{R}^2 , $\vec{r}(t) = <\cos t$, $\sin t >$.

In \mathbb{R}^3 we will represent a vector valued function by:

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\vec{\iota} + g(t)\vec{\jmath} + h(t)\vec{k}.$$

Ex. Let $\vec{r}(t) = \langle t^2, \sqrt{t^2 - 9}, \ln t \rangle$, find the domain of \vec{r} .

The domain is all values t where $\vec{r}(t)$ is defined:

The domain of t^2 is all real numbers, The domain of $\sqrt{t^2 - 9}$ is $|t| \ge 3$, The domain of $\ln t$ is t > 0. So the domain of \vec{r} is the intersection of these 3 sets, $t \ge 3$ (i.e. $[3, \infty)$). Def. If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, then:

$$\lim_{t\to a} \vec{r}(t) = <\lim_{t\to a} f(t), \ \lim_{t\to a} g(t), \ \lim_{t\to a} h(t) >$$

(provided the limits of the components exist).

Def. $\vec{r}(t)$ is **continuous at** t = a if $\lim_{t \to a} \vec{r}(t) = \vec{r}(a)$ (i.e. it's continuous if all of the components are continuous.).

We can think of this vector valued function on a subset of \mathbb{R} as a curve in \mathbb{R}^3 defined by:

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$$

 $x = f(t)$
 $y = g(t)$
 $z = h(t).$

Ex. Describe the curve defined by: $\vec{r}(t) = \langle 3 - t, 2t + 1, -3t \rangle$.

x = 3 - t	The parametric form of a line through $(3, 1, 0)$
y = 1 + 2t	with direction vector < -1 , 2, $-3 >$.
z = -3t	

Ex. Sketch the curve given by x = -cost, y = 3sint; $0 \le t \le 2\pi$.

Notice that $x^2 + (\frac{y}{3})^2 = \cos^2 t + \sin^2 t = 1.$

 $x^{2} + \left(\frac{y}{3}\right)^{2} = 1$ is an ellipse with the y axis as the major axis.

The curve starts at t = 0, $x = -\cos(0) = -1$, $y = 3\sin(0) = 0$. As t increases from 0, y = 3sint is initially positive.

So the curve starts at (-1,0) and then moves into the second quadrant. Therefore, this curve moves clockwise around the ellipse from (-1,0).

Ex. Sketch the curve whose vector equation is:

$$\vec{r}(t) = \langle 4 \sin t, 4 \cos t, t \rangle = 4 \sin t \, \vec{\iota} + 4 \cos t \, \vec{\jmath} + tk.$$

Notice: $x = 4 \sin t$, $y = 4 \cos t$, z = t and $x^2 + y^2 = 16 \sin^2 t + 16 \cos^2 t = 16$.

So the curve lies on the cylinder of radius 4 whose axis is the *z*-axis.

At t = 0 we're at $\vec{r}(0) = < 4 \sin 0$, $4 \cos 0$, 0 > = < 0,4,0 >.

This is a helix.

Which direction does the curve move as t increases? As t increases, z = t increases, So the curve looks like:

Ex. Find a vector function for the line segment between P(-3, 2, -1) and Q(0, -2, 3).

Recall: $\vec{r}(t) = (1-t)\vec{r}_0 + t\vec{r}_1$, $0 \le t \le 1$, is a line segment between \vec{r}_0, \vec{r}_1 . $\vec{r}(t) = (1-t) < -3$, 2, -1 > +t < 0, -2, 3 > = < -3 + 3t, 2 - 2t, -1 + t > + < 0, -2t, 3t > $\vec{r}(t) = < -3 + 3t$, 2 - 4t, -1 + 4t >; $0 \le t \le 1$

The corresponding parametric equations are:

$$x = -3 + 3t$$

 $y = 2 - 4t$ $0 \le t \le 1$
 $z = -1 + 4t$.

 $\vec{r}'(t)$ is called the **tangent vector** for $\vec{r}(t)$, provided $\vec{r}'(t)$ exists and $\vec{r}'(t) \neq \vec{0}$ (i.e. the curve is "**regular**").

Def. The **tangent line to the curve**, *C*, **at point**, *P*, is defined to be the line through *P* parallel to the tangent vector $\vec{r}'(t)$.

Def. The unit tangent vector is: $\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$.

Theorem: If
$$\vec{r}(t) = \langle f(t), g(t), m(t) \rangle = f(t)\vec{\iota} + g(t)\vec{\jmath} + m(t)k$$
,
where $f(t), g(t)$, and $m(t)$ are differentiable, then:
 $\vec{r}'(t) = \langle f'(t), g'(t), m'(t) \rangle = f'(t)\vec{\iota} + g'(t)\vec{\jmath} + m'(t)\vec{k}$.

Proof:

$$\vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

$$= < \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}, \lim_{h \to 0} \frac{g(t+h) - g(t)}{h}, \lim_{h \to 0} \frac{m(t+h) - m(t)}{h} >$$

$$= < f'(t), g'(t), m'(t) >.$$

Ex. Find the derivative of $\vec{r}(t) = \langle t^3, \ln t, e^{-t} \rangle$ and the unit tangent vector at t = 1.

$$\begin{aligned} \vec{r}'(t) &= \langle 3t^2, \frac{1}{t}, -e^{-t} \rangle \\ \vec{r}'(1) &= \langle 3, 1, -e^{-1} \rangle \\ \vec{T}(1) &= \frac{\vec{r}'(1)}{|\vec{r}'(1)|} = \frac{\langle 3, 1, -e^{-1} \rangle}{\sqrt{3^2 + 1 + e^{-2}}} = \frac{\langle 3, 1, -e^{-1} \rangle}{\sqrt{10 + e^{-2}}} \\ &= \langle \frac{3}{\sqrt{10 + e^{-2}}}, \frac{1}{\sqrt{10 + e^{-2}}}, \frac{-e^{-1}}{\sqrt{10 + e^{-2}}} \rangle. \end{aligned}$$

< 1, -2 >

_3

-1

0

Ex. Find parametric equations for the tangent line to:

$$x = t^{2} + t$$

 $y = t^{2} - t$ at (2, 0, 2).
 $z = t + 1$

$$(x, y, z) = (t^2 + t, t^2 - t, t + 1) = (2,0,2)$$

So $t + 1 = 2$ and $t = 1$.

We need to find the tangent line to this curve at t = 1.

$$\vec{r}(t) = \langle t^2 + t, t^2 - t, t + 1 \rangle$$

$$\bar{r}'(t) = \langle 2t + 1, 2t - 1, 1 \rangle.$$

At (2, 0, 2) we have:

$$\vec{r}'(1) = < 3, 1, 1 >.$$

So we have a point on the line, (2, 0, 2), and a direction vector, $\vec{v} = \vec{r}'(1) = <3, 1, 1>$.

Equation of tangent line:

$$x = 2 + 3t$$
$$y = t$$
$$z = 2 + t.$$

Ex. Suppose a particle following the path $\vec{c}(t) = 4\cos(\pi t)$, $\sin(\pi t)$, $t^2 >$ flies off along the tangent line at $t_0 = 1$. Compute the position at $t_1 = 3$.

At $t_0 = 1$ the position of the particle is $\vec{c}(1) = < 4\cos\pi, \sin\pi, 1^2 > = < -4,0,1 >.$

The tangent vector at $t_0 = 1$ is given by:

 $\vec{c}'(t) = < -4\pi \sin(\pi t), \pi \cos(\pi t), 2t > \vec{c}'(1) = < 0, -\pi, 2 >.$

Thus the vector equation of the tangent line at t = 1 is:

Notice that at t = 1, s = 0. Thus to find the position of the particle at t = 3 we need to substitute s = 2 into the equation of the tangent line.

Position of particle at t = 3, i.e., when s = 2: $\vec{l}(2) = < -4, -2\pi, 5 >$. Theorem: If $\vec{u}(t)$, $\vec{v}(t)$ different vector functions, c a constant, and f(t) is a differentiable real valued function, then:

1.
$$\frac{d}{dt} \left(\vec{u}(t) + \vec{v}(t) \right) = \frac{d\vec{u}}{dt} + \frac{d\vec{v}}{dt} = \vec{u}'(t) + \vec{v}'(t)$$
2.
$$\frac{d}{dt} \left(c\vec{u}(t) \right) = c \frac{d\vec{u}}{dt} = c\vec{u}'(t)$$
3.
$$\frac{d}{dt} \left(f(t)\vec{u}(t) \right) = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)$$
4.
$$\frac{d}{dt} \left(\vec{u}(t) \cdot \vec{v}(t) \right) = \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t)$$

5.
$$\frac{a}{dt} \left(\vec{u}(t) \times \vec{v}(t) \right) = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)$$

6.
$$\frac{d}{dt}\left(\vec{u}(f(t))\right) = f'(t) \,\vec{u}'(f(t))$$
 chain rule.

Proof of #4:

$$\vec{u}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle; \quad \vec{v}(t) = \langle g_1(t), g_2(t), g_3(t) \rangle$$

$$\vec{u}(t) \cdot \vec{v}(t) = f_1(t)g_1(t) + f_2(t)g_2(t) + f_3(t)g_3(t)$$

$$\begin{aligned} \frac{d}{dt} \left(\vec{u}(t) \cdot \vec{v}(t) \right) &= f_1(t) g'_1(t) + f'_1(t) g_1(t) + f'_2(t) g_2(t) + \\ f_2(t) g'_2(t) + f'_3(t) g_3(t) + f_3(t) g'_3(t) \\ &= \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t). \end{aligned}$$