Curves in \mathbb{R}^2 and \mathbb{R}^3 - HW Problems

- 1. Sketch the curve represented by
- a. $x = 2\cos(t)$ $0 \le t \le 2\pi$

$$y = 2\sin(t)$$

- b. $x = 2\cos(t)$ $0 \le t \le 2\pi$ $y = 2\sin(t)$ z = t
- 2. Find parametrizations for the following curves.
- a. The line through (-2, 1, 1) and (2, 2, -2)
- b. $x^2 + y^2 = 9$ in \mathbb{R}^2
- c. $y = 9 x^2$ in \mathbb{R}^2
- d. $x = y^3 + 2y 1$ in \mathbb{R}^2

3. Find a unit tangent vector to $\vec{c}(t) = \cos(2t)$, $\sin(2t)$, t >at $t = \frac{\pi}{8}$. Write an equation of the tangent line to $\vec{c}(t)$ at $t = \frac{\pi}{8}$.

4. A particle is travelling along a path given by $\vec{c}(t) = \langle e^{-t}, e^t, \sin(t) \rangle$. At time t = 1 the particle flies off along the tangent to the curve at that point. Find the position of the particle at t = 2.