Many things depend on more than 1 unknown (e.g. the cost of building a car, volume of circular cylinder: $V = \pi r^2 h$, etc).

Def. A **real-valued function of 2 variables** (or *n* variables) is a rule that assigns to each point (x, y) in a domain, *D*, a real number denoted by f(x, y). The set of values of *f* is called the range = $\{f(x, y) | (x, y) \in D\}$.

We often write: z = f(x, y)

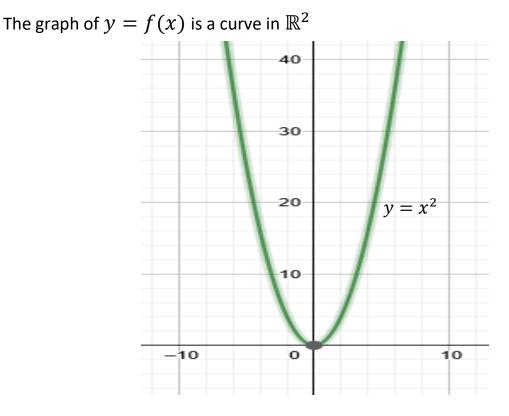
Ex. $f(x, y) = x^2 + y^2 - 3e^x$ is a real valued function of 2 variables.

Def. A **vector-valued function of 2 variables** (or *n* variables) is a rule that assigns each point (x, y) to a vector in \mathbb{R}^m , m > 1.

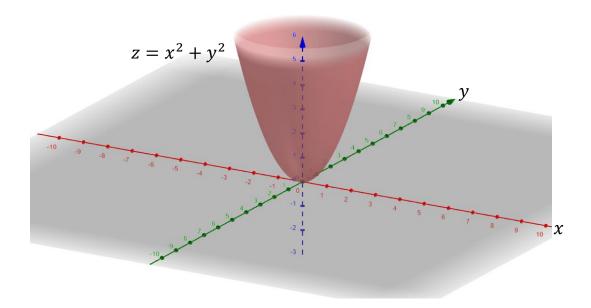
Ex. $f(x, y) = \langle x^2 + y^2, \cos x, \sin y \rangle$ is a vector valued function of 2 variables.

Ex. $f(t) = <\cos t$, $\sin t >$, is a vector valued function of 1 variable.

Def. If f is a real valued function of 2 variables with domain, D, then the **graph** of f is the points $(x, y, z) \in \mathbb{R}^3$ such that $z = f(x, y), (x, y) \in D$.

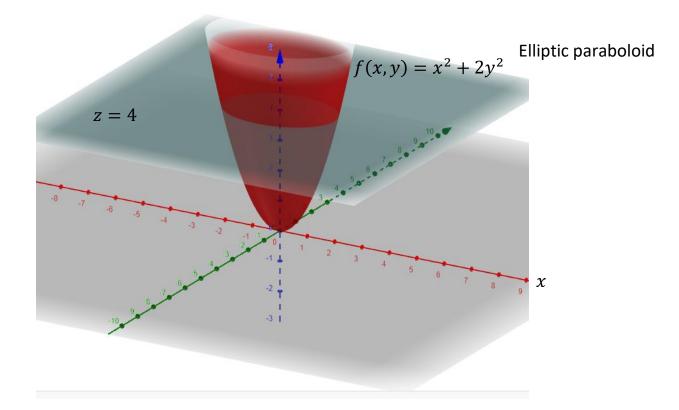


The graph of z = f(x, y) is a surface in \mathbb{R}^3



Def. Level curves and surfaces: let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ and let $k \in \mathbb{R}$, then the **level** set of value k is defined to be the set of points $\vec{x} \in U$, at which $f(\vec{x}) = k$. If n = 2, then we call the level set a **level curve** and if n = 3 we call it a **level** surface.

Ex. Sketch $f(x, y) = x^2 + 2y^2$. Domain = \mathbb{R}^2 ; Range = $z \ge 0$.



Level curves for z = k > 0 are ellipses.

Def. A section of the graph of f is the intersection of the graph of f with a vertical plane (i.e., a plane parallel to the xz or yz plane).

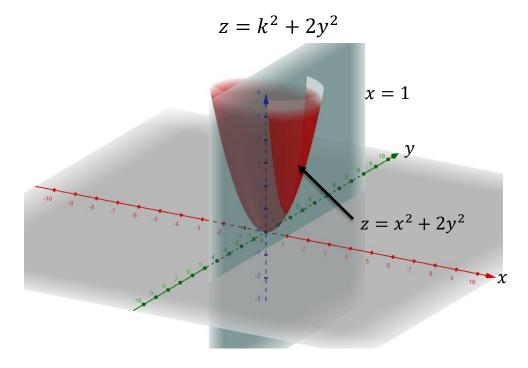
Ex. Let $z = f(x, y) = x^2 + 2y^2$

Sections of the graph of f are parabolas.

For example, if y = k, then we get:

$$z = x^2 + 2k^2$$

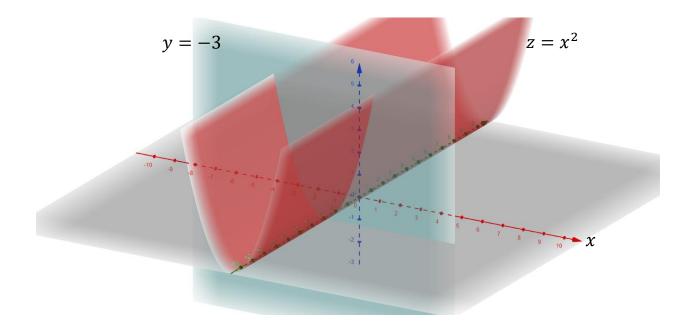
If x = k, then we get:



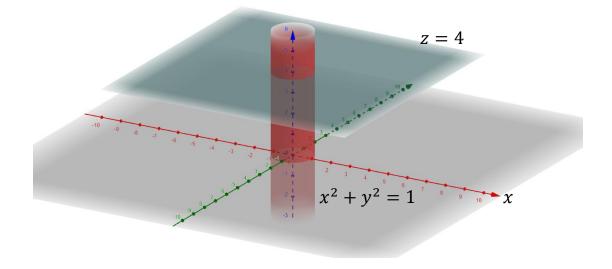
<u>Cylinders</u>: a **cylinder** consists of all lines (called rulings) that are parallel to a given line and pass through a given plane.

Ex. Sketch the surface $z = x^2$.

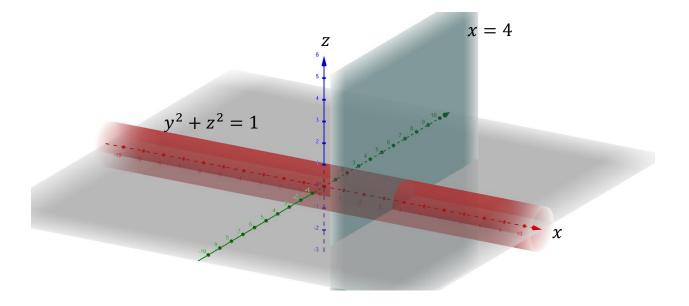
In the xz plane (y = 0) this is just the parabola $z = x^2$. Since the function does not have a "y" in it, every cross sectional of the plane y = k is the same parabola. This is called a **parabolic cylinder**. In fact, if one of x, y, z is missing from the equation, then you will get a cylinder.



Ex. Sketch in \mathbb{R}^3 : a) $x^2 + y^2 = 1$ b) $y^2 + z^2 = 1$ a) $x^2 + y^2 = 1$ is a circle of radius 1 in z = k plane.



b) $y^2 + z^2 = 1$ is a circle of radius 1 in x = k plane.



Ex. Use the level curves and sections to sketch $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$.

When
$$z = 0$$
:
 $x^2 + \frac{y^2}{9} = 1$
 $z = k$:
 $x^2 + \frac{y^2}{9} + \frac{k^2}{4} = 1$
 $x^2 + \frac{y^2}{9} = 1 - \frac{k^2}{4}$ is an ellipse if $-2 < k < 2$. As $k \to 2$
or -2 the major and minor axes are
shrinking to 0. For example,

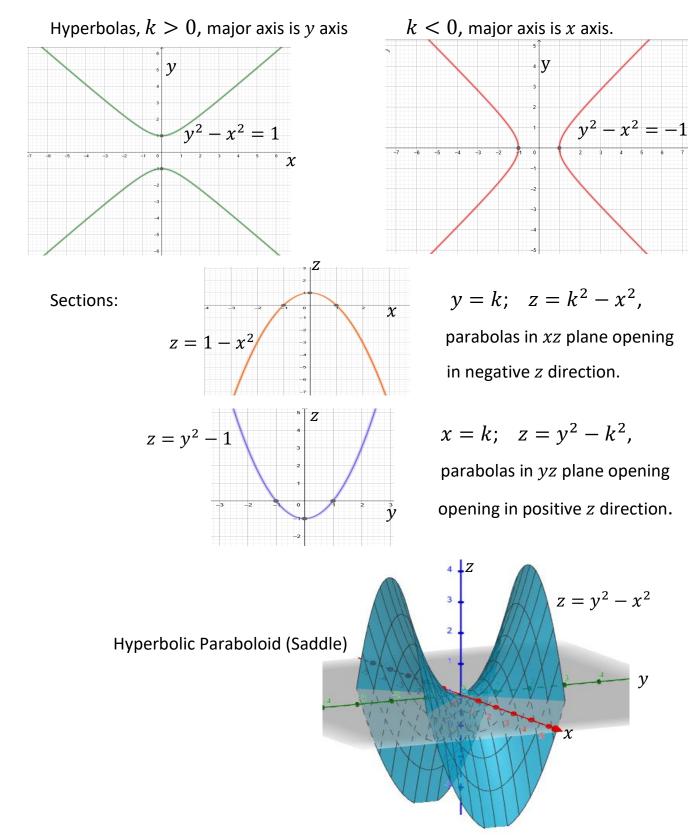
$$k = 1: \ x^2 + \frac{y^2}{9} = \frac{3}{4} \Rightarrow \frac{x^2}{\frac{3}{4}} + \frac{y^2}{\frac{27}{4}} = 1.$$

At
$$x = 0$$
: $\frac{y^2}{9} + \frac{z^2}{4} = 1$ ellipse in *yz* plane
At $x = k$: $\frac{y^2}{9} + \frac{z^2}{4} = 1 - k^2$ $-1 < k < 1$ ellipse

At
$$y = 0$$
: $x^2 + \frac{z^2}{4} = 1$ ellipse in the xz plane
At $y = k$: $x^2 + \frac{z^2}{4} = 1 - \frac{k^2}{9}$ $-3 < k < 3$ ellipse
 $z = 1$ Ellipsoid

Ex. Use level curves and sections to sketch $z = y^2 - x^2$.

Level curves: $k = y^2 - x^2$:

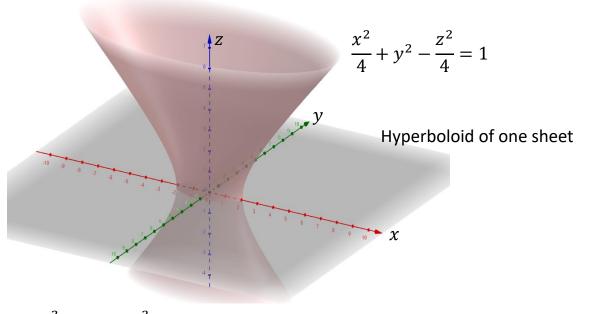


x

Ex. Sketch $\frac{x^2}{4} + y^2 - \frac{z^2}{4} = 1$, using level curves and sections.

At
$$z = k$$
: $\frac{x^2}{4} + y^2 = 1 + \frac{k^2}{4}$ ellipse in slices II xy plane

- At y = 0: $\frac{x^2}{4} \frac{z^2}{4} = 1$ hyperbola in slices II xz plane At y = k: $\frac{x^2}{4} - \frac{z^2}{4} = 1 - k^2$, hyperbolas in xz plane if $k \neq \pm 1$ -1 < k < 1, major axis is x axis k < -1 or k > 1, major axis is z axis.
- At x = 0: $y^2 \frac{z^2}{4} = 1$ hyperbolas in slices II to yz plane At x = k: $y^2 - \frac{z^2}{4} = 1 - \frac{k^2}{4}$, hyperbolas in yz plane if $k \neq \pm 2$ -2 < k < 2, major axis is y axis k < -2 or k > 2, major axis is z axis.



If $-\frac{x^2}{4} + y^2 + \frac{z^2}{4} = 1$, then the major axis is the *x*-axis (with negative term).

Ex. sketch $z^2 = \frac{x^2}{2} + \frac{y^2}{3}$, using level curves and sections.

$$z = k$$
: $k^2 = \frac{x^2}{2} + \frac{y^2}{3}$

x = k: $z^2 - \frac{y^2}{3} = \frac{k^2}{2}$

slices II to xy plane are ellipses if $k \neq 0$ if k = 0, then it's a point slices II to yz plane are hyperbolas if $k \neq 0$, major axis is the z axis.

$$y = k$$
: $z^2 - \frac{x^2}{2} = \frac{k^2}{3}$

slices II to xz plane are hyperbolas if $k \neq 0$, major axis is the z axis.

