Let D^* be a subset of \mathbb{R}^2 then $T: D^* \to \mathbb{R}^2$ is called a **change of variables**. Usually we will be interested in the case where T is a continuously differentiable function. The **image** of D^* under $T, T(D^*)$, is the set of points:

 $(x, y) = T(x^*, y^*)$ for $(x^*, y^*) \in D^*$

Ex. Let $D^* \subseteq \mathbb{R}^2$ be the rectangle $D^* = [0, 1] \times [0, 2\pi]$. So,

$$D^* = \{ (r, \theta) \in \mathbb{R}^2 | 0 \le r \le 1, 0 \le \theta \le 2\pi \}$$

Let $T: D^* \to \mathbb{R}^2$ by $T(r, \theta) = (r \cos \theta, r \sin \theta)$. Find $T(D^*)$.

All of the points of $T(D^*)$ look like $(r \cos \theta, r \sin \theta)$, where $0 \le r \le 1$ and $0 \le \theta \le 2\pi$. If we let $x = r \cos \theta$ and $y = r \sin \theta$, then: $x^2 + y^2 = r^2 \cos^2 \theta + r^2 \sin^2 \theta = r^2 \le 1$

So every point (x, y) in $T(D^*)$ must have $x^2 + y^2 \le 1$, thus: $T(D^*) \subseteq$ the unit disk

But any point in the unit disk can be written as $(r \cos \theta, r \sin \theta)$ for some $0 \le r \le 1$ and $0 \le \theta \le 2\pi$.

Thus, $T(D^*)$ is the unit disk.

Ex. Let $D^* = [-1, 1] \times [-1, 1] \subseteq \mathbb{R}^2$, a square with side length of 2 centered at the origin. Let $T(x, y) = \left(\frac{(x-y)}{2}, \frac{(x+y)}{2}\right)$. Find $T(D^*)$.

We can eliminate the t by adding the equations to get:

x + y = 1

Since $-1 \le t \le 1$, we get the portion of the line that starts at t = -1 (i.e. x = 1, y = 0) and ends at t = 1 (i.e. x = 0, y = 1).

Similarly:

- $c_{2}(t) = \langle t, 1 \rangle \qquad -1 \leq t \leq 1$ $c_{3}(t) = \langle -1, t \rangle \qquad -1 \leq t \leq 1$ $c_{4}(t) = \langle t, -1 \rangle \qquad -1 \leq t \leq 1.$
- $T(c_2(t)) = \left(\frac{t-1}{2}, \frac{t+1}{2}\right); \text{ or } x y = -1,$ a line segment starting at (-1, 0) ending at (0, 1).
- $T(c_3(t)) = \left(\frac{-1-t}{2}, \frac{-1+t}{2}\right); \text{ or } x + y = -1,$ a line segment starting at (0, -1) ending at (-1, 0).
- $T(c_4(t)) = \left(\frac{t+1}{2}, \frac{t-1}{2}\right); \text{ or } x y = 1,$ a line segment starting at (0, -1) ending at (1, 0).

So T rotates D^* by 45° counterclockwise.

Def. A mapping $T: D^* \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ is **one-to-one** if for:

$$(u, v), (u', v') \in D^*$$

$$T(u, v) = T(u', v')$$
 implies that $u = u'$ and $v = v'$.

Thus, T is 1-1 if two different points in its domain are never mapped to the same point.

Ex. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x, y) = (x^2, x^4 + y)$. Show that T is not 1-1.

T is not 1-1 because T(1, 2) = T(-1, 2) (for example) but $(1, 2) \neq (-1, 2)$.

Ex. Consider the polar coordinate mapping:

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(r, \theta) = (r \cos \theta, r \sin \theta)$

Show T is not 1-1 if the domain is all of \mathbb{R}^2 .

Is *T* 1-1 if the domain is $D^* = [0, 1] \times [0, 2\pi)$?

 $T(1,0) = T(1,2\pi) \text{ since:}$ $T(1,0) = (1(\cos 0), 1(\sin 0)) = (1,0)$ $T(1,2\pi) = (1(\cos 2\pi), 1(\sin 2\pi)) = (1,0)$ So *T* is not 1-1 on \mathbb{R}^2

If the domain is $D^* = [0, 1] \times [0, 2\pi)$ we still have:

$$T(0, \theta_1) = T(0, \theta_2) = (0, 0)$$
 for any $0 \le \theta_1, \theta_2 < 2\pi$

So T is still not 1-1.

It **is** 1-1 if:

$$D^* = (0, 1] \times [0, 2\pi).$$

Ex. Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x, y) = \left(\frac{x-y}{2}, \frac{x+y}{2}\right)$ is 1-1.

We must show that if T(x, y) = T(x', y'), then x = x' and y = y'.

$$T(x,y) = \left(\frac{x-y}{2}, \frac{x+y}{2}\right)$$
$$T(x',y') = \left(\frac{x'-y'}{2}, \frac{x'+y'}{2}\right)$$
$$\left(\frac{x-y}{2}, \frac{x+y}{2}\right) = \left(\frac{x'-y'}{2}, \frac{x'+y'}{2}\right)$$

$$\frac{x-y}{2} = \frac{x'-y'}{2}$$
$$\frac{x+y}{2} = \frac{x'+y'}{2}$$

OR

$$x - y = x' - y'$$

$$x + y = x' + y'$$

$$2x = 2x'$$

$$x = x'$$

Subtracting the equations we get:

$$x - y = x' - y'$$

$$x + y = x' + y'$$

$$-2y = -2y'$$

$$y = y'$$

Thus,
$$(x, y) = (x', y')$$
 and T is 1-1 on \mathbb{R}^2

Def. $T: D^* \subseteq \mathbb{R}^2 \to D$. The mapping T is **onto** D if for every point $(x, y) \in D$ there exists at least one point $(u, v) \in D^*$ such that T(u, v) = (x, y).

Thus, T is onto if we can solve the equation: T(u, v) = (x, y)where $(x, y) \in D$ and $(u, v) \in D^*$. If the solution is always unique, then T is also 1-1. Ex. Determine if the following functions $T: \mathbb{R}^2 \to \mathbb{R}^2$ are 1-1 and/or onto.

- a) $T(x, y) = (e^x, y)$ b) $T(r, \theta) = (r \cos \theta, r \sin \theta)$
- c) $T(x, y) = (x^2, y)$
- d) $T(x, y) = (\sqrt[3]{x}, \sqrt[3]{y})$
- a) $e^x > 0$ so $T(x, y) = (e^x, y)$ can't be onto since, for example, there is no (x, y) such that $T(x, y) = (e^x, y) = (-1, 1)$.

T is 1-1 on
$$\mathbb{R}^2$$
 since if $T(x, y) = T(x', y')$ and
 $(e^x, y) = (e^{x'}, y')$, then $e^x = e^{x'} \Rightarrow x = x'$, since
 $f(x) = e^x$ is strictly increasing, so it's 1-1. And $y = y'$ so we
can say $(x, y) = (x', y')$.

b) *T* is onto since if $T(r, \theta) = (a, b)$ for any $(a, b) \in \mathbb{R}^2$, we have: $a = r \cos \theta$ and $b = r \sin \theta$. If a = 0, then $T\left(b, \frac{\pi}{2}\right) = (0, b)$. If a > 0 then let $\theta = \tan^{-1}(\frac{b}{a})$, $r = \sqrt{a^2 + b^2}$, then $T(r, \theta) = (a, b)$. If a < 0 then let $\theta = \pi + \tan^{-1}(\frac{b}{a})$, $r = \sqrt{a^2 + b^2}$, then $T(r, \theta) = (a, b)$.

T is not 1-1 since $T(0, \theta) = (0, 0)$ for all θ .

c) $T(x, y) = (x^2, y)$ is neither 1-1 nor onto. T(-1, y) = T(1, y) so T is not 1-1. $x^2 \ge 0$, so there is no (x, y) such that $T(x, y) = (x^2, y) = (-1, 1)$. d) $T(x, y) = (\sqrt[3]{x}, \sqrt[3]{y})$ is 1-1 and onto.

T is 1-1 since if T(x, y) = T(x', y'), then: $\begin{pmatrix} \sqrt[3]{x}, \sqrt[3]{y} \end{pmatrix} = \begin{pmatrix} \sqrt[3]{x'}, \sqrt[3]{y'} \end{pmatrix}$ $\sqrt[3]{x} = \sqrt[3]{x'} \qquad \sqrt[3]{y} = \sqrt[3]{y'}$ $x = x' \qquad y = y'$ So (x, y) = (x', y') and T is 1-1.

To show T is onto, let $(a, b) \in \mathbb{R}^2$. Then we must show that we can find $(x, y) \in \mathbb{R}^2$ such that T(x, y) = (a, b).

 $T(x, y) = \left(\sqrt[3]{x}, \sqrt[3]{y}\right) = (a, b)$ $\sqrt[3]{x} = a ; \qquad \sqrt[3]{y} = b$ $x = a^3 ; \qquad y = b^3$

So
$$T(a^3,b^3)=(a,b)$$
 and T is onto.

We can extend the notion of a change of variables to subsets of $D^* \subseteq \mathbb{R}^3$ as a map $T: D^* \to \mathbb{R}^3$.

To show
$$T\colon \mathbb{R}^3 o\mathbb{R}^3$$
 is 1-1 you must show if: $T(x,y,z)=T(x',y',z')$, then $x=x',y=y'$, and $z=z'$.

To show T is onto you must show given any $(a, b, c) \in \mathbb{R}^3$ that you can find x, y, z such that:

$$T(x, y, z) = (a, b, c).$$

Ex. Determine if the map $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x, y^3, xz)$ is 1-1 and/or onto.

T is not 1-1. T(x, y, z) = T(x', y', z') $(x, y^{3}, xz) = (x', {y'}^{3}, x'z')$ x = x' $y^{3} = {y'}^{3} \implies y = {y'}$ xz = x'z', but this does not imply that z = z', since if x = x' = 0the equation will be true for all values of z and z'.

In particular,

$$T(0,1,1) = (0,1,0) = T(0,1,3).$$

Thus *T* is not 1-1.

T is not onto.

Suppose that T(x, y, z) = (a, b, c). Then we have: $(x, y^3, xz) = (a, b, c)$ x = a $y^3 = b \implies y = \sqrt[3]{b}$ $xz = c \implies az = c$ But if a = 0, and $c \neq 0$, then there is no z such that az = c.

But if a = 0, and $c \neq 0$, then there is no 2 such that az = c. In particular, there is no (x, y, z) such that T(x, y, z) = (0,1,3).