The Dot Product, Length, and Distance- HW Problems

1. Calculate $\vec{v} \cdot \vec{w}$, $\|\vec{v}\|$, and $\|\vec{w}\|$.

a.
$$\vec{v} = < 2, -1 >$$
, $\vec{w} = < 3, 2 >$

b.
$$\vec{v} = 2\vec{i} - 3\vec{j} + \vec{k}$$
, $\vec{w} = -4\vec{i} + \vec{j} + 3\vec{k}$

2. Find a unit vector in the direction of $\vec{v} = 3\vec{\iota} - 2\vec{j} + \vec{k}$.

3. Find all values of x such that the vectors $\langle x, 2, -5 \rangle$ and $\langle x, 2, x \rangle$ are perpendicular (ie orthogonal).

4. Let $\vec{v} = <1, -2, 2 >$ and $\vec{w} = <3, 1, 2 >$. Find the vector projection of \vec{v} on to \vec{w} and the vector projection of \vec{w} on to \vec{v} .

5. Show that $\vec{v} = 4\vec{i} - 2\vec{j} + 8\vec{k}$ and $\vec{w} = -6\vec{i} + 3\vec{j} - 12\vec{k}$ are parallel using the dot product.