Newton's Second Law and Circular Motion- HW Problems

1. Find the velocity and acceleration vectors and the speed for $\vec{c}(t) = (\frac{1}{2}t^2)\vec{i} + (\frac{1}{3}t^3)\vec{j} + (\frac{2}{3}t^{\frac{3}{2}})\vec{k}.$

2. Determine which of the following curves is regular.

a.
$$\vec{c}(t) = <\cos(2t)$$
, $\sin(2t)$, $t >$

- b. $\vec{c}(t) = <\cos(t^2), \sin(t^2), t^2 >$
- c. $\vec{c}(t) = \langle e^t, t^4, 2t + 1 \rangle$

3. The acceleration, initial velocity, and initial position of a particle is given by $\vec{a}(t) = \langle -4, 12t, 2 \rangle$, $\vec{v}(0) = \langle -4, 6, -6 \rangle$, $\vec{r}(0) = \langle 0, 0, 5 \rangle$. Find the particle's path $\vec{r}(t)$ and when it crosses the *x*-*y* plane.

4. A body of mass 6 kg moves in a circle of radius 3 m making one revolution every 4 seconds. Find the centripetal force on the body.

5. The velocity of a particle is given by $\vec{v}(t) = \langle te^{t^2}, 2t, 3t^2 + 1 \rangle$. Find the path of the particle, $\vec{c}(t)$, if $\vec{c}(0) = \langle 2, 3, 4 \rangle$.

- 6. A particle is moving in space with a velocity $\vec{v}(t) = \langle 2t 5, 3t^2 + 2, 2t \rangle$. Its position at t = 0 is $\vec{r}(0) = \langle 4, 3, 0 \rangle$.
- a. Find the position of the particle, $\vec{r}(t)$, for $t \ge 0$.
- b. Find the coordinates of the point(s) where the particle crosses the y-z plane.