In the previous section, we saw how to find the absolute maximum and minimum of a real-valued function, f(x, y), on a bounded domained, $D \subseteq \mathbb{R}^2$, where the boundary of D is a curve we can parametrize. Now we want to be able to find the absolute maximum and minimum of a real-valued function, f(x, y), on a general smooth curve in \mathbb{R}^2 given by g(x, y) = C.

In addition, we would like to be able to find the absolute maximum and minimum of a real-valued function, f(x, y, z), on a general smooth surface in \mathbb{R}^3 given by g(x, y, z) = C.

For example, suppose we want to know the maximum value of f(x, y, z) = x + z subject to the constraint that (x, y, z) must lie on the unit sphere, $x^2 + y^2 + z^2 = 1$. Let's call this constraint set *S*.

Notice that even for functions of 1 variable, a continuous function need not have a maximum or minimum value. For example, f(x) = x doesn't have a maximum or minimum value if $x \in \mathbb{R}$ or if 0 < x < 1. However, if the constraint set *S* is closed and bounded, and *f* is a continuous function, then *f* does have a maximum and a minimum value on *S*.

We know for a real-valued function, $f: \mathbb{R}^3 \to \mathbb{R}$, we search for relative maxima and minima at points where $\nabla f(x_0, y_0, z_0) = 0$, where $(x_0, y_0, z_0) \in \mathbb{R}^3$. These are critical points. Now, we want to find maxima and minima for f(x, y, z) when its domain is restricted to a level surface, S, in \mathbb{R}^3 given by g(x, y, z) = C.

Theorem (The Method of Lagrange Multipliers):

Suppose $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$, where n = 2 or 3 are continuously differentiable functions. Let S be the level surface (or curve) given by g(x, y, z) = C. Assume $\nabla g(x, y, z) \neq \vec{0}$. If f restricted to S has a local maximum or minimum at (x_0, y_0, z_0) , then there is a real number, λ (which might be 0), such that:

$$\nabla f(x_0, y_0, z_0) = \lambda \big(\nabla g(x_0, y_0, z_0) \big)$$

In this case, we say (x_0, y_0, z_0) is a critical point of f restricted to S.

Proof: We have already seen that $\nabla g(x, y, z)$ is perpendicular to the tangent plane of *S* at $(x, y, z) \in S$, since:

$$S = \{(x, y, z) \in \mathbb{R}^3 | g(x, y, z) = C\}.$$

This is true for any point $(x, y, z) \in S$.

Now, let's show if $f : \mathbb{R}^3 \to \mathbb{R}$ has a relative maximum or minimum at $(x_0, y_0, z_0) \in S$, then $\nabla f(x_0, y_0, z_0)$ is also perpendicular to the tangent plane to S at (x_0, y_0, z_0) .

Let $c(t) = \langle x(t), y(t), z(t) \rangle$ be any smooth curve on S where $c(0) = \langle x(0), y(0), z(0) \rangle = \langle x_0, y_0, z_0 \rangle$ is a relative maximum or minimum of f restricted to S.

Thus, f(c(t)) = f(x(t), y(t), z(t)) is a function of one variable, t.

By the Chain Rule:

$$\frac{d}{dt} \Big(f \Big(x(t), y(t), z(t) \Big) \Big) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt}$$
$$= \nabla f \cdot \langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \rangle = \nabla f \cdot c'(t)$$

From one variable calculus we know if f is differentiable and t = 0 is a relative maximum or minimum, then $\frac{d}{dt}(f) = 0$, when t = 0.

So at a relative maximum or minimum:

$$0 = \nabla f(x(0), y(0), z(0)) \cdot c'(0).$$

Thus, $\nabla f(x_0, y_0, z_0)$ is perpendicular to the tangent vector of every smooth curve on S that goes through (x_0, y_0, z_0) .

So ∇f is perpendicular to the tangent plane of S at (x_0, y_0, z_0) . Hence:

$$\nabla f(x_0, y_0, z_0) = \lambda \big(\nabla g(x_0, y_0, z_0) \big).$$

 λ is known as the Lagrange multiplier for f and g.

So when given a real-valued function f(x, y, z) (or f(x, y)) and a constraint set g(x, y, z) = C (or g(x, y) = C), to find relative maxima and minima of f(x, y, z) restricted to S, given by g(x, y, z) = C we solve for all points (x, y, z) such that:

$$\nabla f(x, y, z) = \lambda \big(\nabla g(x, y, z) \big)$$

1. $\frac{\partial f}{\partial x} = \lambda \left(\frac{\partial g}{\partial x} \right)$ 2. $\frac{\partial f}{\partial y} = \lambda \left(\frac{\partial g}{\partial y} \right)$ 3. $\frac{\partial f}{\partial z} = \lambda \left(\frac{\partial g}{\partial z} \right)$ 4. g(x, y, z) = C.

So if $f : \mathbb{R}^3 \to \mathbb{R}$ and g(x, y, z) = C is the constraint, then we will have to solve 4 equations in 4 unknowns (x, y, z, λ) .

If $f : \mathbb{R}^2 \to \mathbb{R}$ and g(x, y) = C is the constraint, then we will have to solve 3 equations in 3 unknowns (x, y, λ) .

Ex. Maximize f(x, y, z) = y + z subject to $x^2 + y^2 + z^2 = 1$.

Here, the constraint set, S, is the unit sphere:

$$g(x, y, z) = x^2 + y^z + z^2 = 1.$$

Since f(x, y, z) = y + z is continuous and *S* is closed and bounded, there will be absolute maximum and minimum values of f on *S*.

$$\nabla f = \langle f_x, f_y, f_z \rangle = \langle 0, 1, 1 \rangle$$
$$\nabla g = \langle 2x, 2y, 2z \rangle$$

We get 3 equations from $\nabla f = \lambda(\nabla g)$:

1. $0 = 2\lambda x$

2.
$$1 = 2\lambda y$$

3. $1 = 2\lambda z$

And we get a 4th equation from the constraint:

4. $x^2 + y^2 + z^2 = 1$.

From equation 2 (1 = $2\lambda y$), we know $\lambda \neq 0$.

Thus, from equation 1 ($0 = 2\lambda x$), we can conclude x = 0.

From equations 2 and 3 we have: $2\lambda y = 2\lambda z.$

Since $\lambda \neq 0$, this means:

$$y = z$$
.

Now use equation 4 ($x^2 + y^z + z^2 = 1$) and the fact that we know x = 0 and y = z to get:

$$(0)^{2} + y^{2} + z^{2} = 1$$
$$2y^{2} = 1$$
$$y = \pm \frac{1}{\sqrt{2}}$$

Notice: we never found λ , which is okay since we really want all points (x, y, z) that satisfy the 4 equations.

Thus,
$$\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 and $\left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ are our critical points:

$$f\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{2}{\sqrt{2}} = \sqrt{2}$$

$$f\left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = -\frac{2}{\sqrt{2}} = -\sqrt{2}.$$

So, the absolute maximum value of f restricted to $x^2 + y^2 + z^2 = 1$ is $\sqrt{2}$ (at the point $\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$)

The absolute minimum value of f restricted to $x^2 + y^z + z^2 = 1$ is $-\sqrt{2}$ (at the point $\left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$). Ex. Find the extrema (maxima and minima) of f(x, y) = x subject to $x^2 + 2y^2 = 3$.

In this example, $f: \mathbb{R}^2 \to \mathbb{R}$ is restricted to S, an ellipse, so we can write: $g(x, y) = x^2 + 2y^2 = 3.$

Since $f: \mathbb{R}^2 \to \mathbb{R}$ we will get 2 equations from $\nabla f = \lambda(\nabla g)$ plus 1 equation from the constraint, $x^2 + 2y^2 = 3$.

$$\nabla f = \langle f_x, f_y \rangle = \langle 1, 0 \rangle$$

$$\nabla g = \langle g_x, g_y \rangle = \langle 2x, 4y \rangle$$

$$\nabla f = \lambda (\nabla g)$$

 $g_{x,y} = \langle 2x, 4y \rangle$

- 1. $1 = 2\lambda x$ 2. $0 = 4\lambda y$
- $2. \quad 0 = 4\lambda y$
- $3. \quad x^2 + 2y^2 = 3$

From equation 1, we know $\lambda \neq 0$. Thus, from equation 2, y = 0. Plugging in y = 0 into equation 3 we get:

$$x^2 = 3 \Rightarrow x = \pm \sqrt{3}.$$

Thus, the critical points are $(\sqrt{3}, 0), (-\sqrt{3}, 0)$.

Notice: once again we don't need to find λ .

$$f(\sqrt{3},0) = \sqrt{3}$$
$$f(-\sqrt{3},0) = -\sqrt{3}.$$

Since *S*, an ellipse, is closed and bounded and f(x, y) = x is continuous on *S*, *f* must take on its absolute maximum and minimum values. Thus, the absolute maximum value of *f* on *S* is $\sqrt{3}$ and the absolute minimum value of *f* on *S* is $-\sqrt{3}$.

Ex. Assume that among all rectangular boxes with a surface area of $54m^2$ there is a box of largest possible volume. Find its dimensions.

We want to maximize the volume:

$$f(x, y, z) = xyz$$

Subject to:

$$g(x, y, z) = 2xy + 2xz + 2yz = 54.$$

$$\nabla f = \langle yz, xz, xy \rangle$$

$$\nabla g = \langle 2y + 2z, 2x + 2z, 2x + 2y \rangle$$

So $\nabla f = \lambda(\nabla g)$ gives us the following equations:

- 1. $yz = 2\lambda(y + z)$
- 2. $xz = 2\lambda(x + z)$
- 3. $xy = 2\lambda(x + y)$

The constraint gives the 4th equation:

4. 2xy + 2xz + 2yz = 54 i.e. xy + xz + yz = 27. Notice that $x \neq 0, y \neq 0, z \neq 0$, otherwise f(x, y, z) = 0. Solve equations 1, 2, and 3 for 2λ :

1.
$$\frac{yz}{y+z} = 2\lambda$$

2. $\frac{xz}{x+z} = 2\lambda$
3. $\frac{xy}{x+y} = 2\lambda$

Setting equations 1 and 2 equal to each other:

$$\frac{yz}{y+z} = \frac{xz}{x+z}$$

$$(x+z)(yz) = xz(y+z)$$

$$yz^{2} = xz^{2}$$

$$y = x \quad (\text{since } z \neq 0).$$

Similarly, setting equations 2 and 3 equal to each other:

$$\frac{xz}{x+z} = \frac{xy}{x+y}$$
$$(x+y)(xz) = (xy)(x+z)$$
$$x^2z = x^2y$$
$$z = y \text{ (since } x \neq 0\text{).}$$

Thus x = y = z. Now plug into equation 4:

$$xy + xz + yz = 27$$
$$x^{2} + x^{2} + x^{2} = 27$$
$$3x^{2} = 27$$
$$x = \pm 3.$$

So the dimensions that maximize the volume are: $3m \times 3m \times 3m$.

Def. Let $U \subseteq \mathbb{R}^n$, n = 2 or 3, U is open with a boundary ∂U . We say ∂U is smooth if ∂U is the level set of a smooth function, g, whose gradient $\nabla g \neq 0$.

Lagrange Multiplier Strategy for Finding Absolute Maxima and Minima on Bounded Regions, U:

- 1. Locate all critical points of f in U (i.e. $\nabla f = 0$)
- 2. Use Lagrange multipliers to find all critical points of f on ∂U (i.e. $\nabla f = \lambda(\nabla g)$)
- 3. Compute the values of f at all of the critical points
- 4. Select the largest and smallest values
- Ex. Find the absolute maximum and minimum values of

$$f(x, y, z) = x^2 + y^2 + z^2 + x - z$$

on the set:

$$D = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}.$$

Here $D = U \cup (\partial U)$ where:

$$U = \{ (x, y, z) | x^2 + y^2 + z^2 < 1 \}$$
$$\partial U = \{ (x, y, z) | x^2 + y^2 + z^2 = 1 \}.$$

1. Start by finding all critical points of f in U:

$$\nabla f = \langle f_x, f_y, f_x \rangle = \langle 2x + 1, 2y, 2z - 1 \rangle$$

$$f_x = 2x + 1 = 0 \quad \Rightarrow \quad x = -\frac{1}{2}$$

$$f_y = 2y = 0 \quad \Rightarrow \quad y = 0$$

$$f_z = 2z - 1 = 0 \quad \Rightarrow \quad z = \frac{1}{2}$$
Critical point in $U: (-\frac{1}{2}, 0, \frac{1}{2}).$

2. Find all critical points on $\partial U = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}.$ $g(x, y, z) = x^2 + y^2 + z^2 = 1$ $\nabla g = \langle g_x, g_y, g_z \rangle = \langle 2x, 2y, 2z \rangle$

$$\nabla f = \lambda(\nabla g):$$

1. $2x + 1 = 2\lambda x$
2. $2y = 2\lambda y$
3. $2z - 1 = 2\lambda z$
4. $x^2 + y^2 + z^2 = 1$.

Notice $\lambda \neq 1$ since if $\lambda = 1$, then by equation 1: 2x + 1 = 2x, which has no solution.

Since $\lambda \neq 1$, by equation 2:

$$2y = 2\lambda y \implies y = 0.$$

Plugging into equation 4, we get:

$$x^2 + z^2 = 1.$$

Now solve equations 1 and 3 for 2λ :

1.
$$\frac{2x+1}{x} = 2\lambda$$

2.
$$\frac{2z-1}{z} = 2\lambda$$

Setting these equations equal to each other:

$$\frac{2x+1}{x} = \frac{2z-1}{z}$$
$$z(2x+1) = (2z-1)x$$
$$z = -x.$$

Now plug this into equation 4 with y = 0:

$$x^{2} + z^{2} = 1$$

$$x^{2} + (-x)^{2} = 1$$

$$2x^{2} = 1$$

$$x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2}.$$

So the critical points on ∂U are:

$$\left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}\right); \left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right).$$

3. Now find the values of f at all of the critical points.

$$f\left(-\frac{1}{2},0,\frac{1}{2}\right) = \frac{1}{4} + \frac{1}{4} - \frac{1}{2} - \frac{1}{2} = -\frac{1}{2}$$
$$f\left(\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 1 + \frac{2}{\sqrt{2}} = 1 + \sqrt{2}$$
$$f\left(-\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right) = \frac{1}{2} + \frac{1}{2} - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 1 - \frac{2}{\sqrt{2}} = 1 - \sqrt{2}.$$

The absolute maximum of f is $1 + \sqrt{2}$ (at the point $\left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}\right)$).

The absolute minimum of f is $-\frac{1}{2}$ (at the point $\left(-\frac{1}{2}, 0, \frac{1}{2}\right)$).

- Ex. Find the points where $f(x, y) = x^2 + xy + y^2$ subject to $x^2 + y^2 \le 1$ attains its maximum and minimum values. Find those values.
 - 1. Find the critical points of $f(x, y) = x^2 + xy + y^2$ for $\{(x, y) \mid x^2 + y^2 < 1\}.$ $f_x = 2x + y = 0 \implies y = -2x$ $f_y = 2y + x = 0 \implies 2(-2x) + x = 0 \implies x = 0, y = 0.$ Only critical point is (0,0).
 - 2. Find all critical points on the boundary, $\{(x, y) | x^2 + y^2 = 1\}$. So $g(x, y) = x^2 + y^2 = 1$. $\nabla g = \langle g_x, g_y \rangle = \langle 2x, 2y \rangle$ $\nabla f = \langle f_x, f_y \rangle = \langle 2x + y, 2y + x \rangle$.

 $\nabla f = \lambda(\nabla g) :$ 1. $2x + y = 2\lambda x$ 2. $2y + x = 2\lambda y$ 3. $x^2 + y^2 = 1$ $x \neq 0$, since from equation 1, if x = 0 then y = 0, but that doesn't satisfy equation 3, $x^2 + y^2 = 1$.

 $y \neq 0$, since from equation 2, if y = 0 then x = 0.

Now solve equations 1 and 2 for 2λ :

1.
$$\frac{2x+y}{x} = 2\lambda$$

2.
$$\frac{2y+x}{y} = 2\lambda$$

Setting the expressions for 2λ equal to each other:

$$\frac{2x+y}{x} = \frac{2y+x}{y}$$
$$y(2x+y) = x(2y+x)$$
$$2xy + y^2 = 2xy + x^2$$
$$y^2 = x^2$$
$$y = \pm x.$$

Now plug $y = \pm x$ into $x^2 + y^2 = 1$. $x^2 + x^2 = 1 \implies 2x^2 = 1 \implies x = \pm \frac{\sqrt{2}}{2}$.

Thus the critical points on the set
$$\{(x, y) | x^2 + y^2 = 1\}$$
 are:
 $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \quad \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \quad \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \quad \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right).$

3. Find the value of f at all critical points.

$$f(0,0) = 0$$

$$f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$$

$$f\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

$$f\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

$$f\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}.$$

So the minimum value occurs at (0,0) and the minimum value is 0. The maximum value occurs at $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ and the maximum value is $\frac{3}{2}$.