In the previous section, we saw how to find the absolute maximum and minimum of a real-valued function, $f(x, y)$, on a bounded domained, $D \subseteq \mathbb{R}^2$, where the boundary of D is a curve we can parametrize. Now we want to be able to find the absolute maximum and minimum of a real-valued function, $f(x, y)$, on a general smooth curve in \mathbb{R}^2 given by $g(x,y) = C$.

In addition, we would like to be able to find the absolute maximum and minimum of a real-valued function, $f(x, y, z)$, on a general smooth surface in \mathbb{R}^3 given by $q(x, y, z) = C$.

For example, suppose we want to know the maximum value of $f(x, y, z) = x + z$ subject to the constraint that (x, y, z) must lie on the unit sphere, $x^2 + y^2 + z^2 = 1$. Let's call this constraint set S.

Notice that even for functions of 1 variable, a continuous function need not have a maximum or minimum value. For example, $f(x) = x$ doesn't have a maximum or minimum value if $x \in \mathbb{R}$ or if $0 < x < 1$. However, if the constraint set S is closed and bounded, and f is a continuous function, then f does have a maximum and a minimum value on S .

We know for a real-valued function, $f: \mathbb{R}^3 \to \mathbb{R}$, we search for relative maxima and minima at points where $\nabla f(x_0, y_0, z_0) = 0$, where $(x_0, y_0, z_0) \in \mathbb{R}^3$. These are critical points. Now, we want to find maxima and minima for $f(x, y, z)$ when its domain is restricted to a level surface, S, in \mathbb{R}^3 given by $g(x, y, z) = C$.

Theorem (The Method of Lagrange Multipliers):

Suppose $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$, where $n = 2$ or 3 are continuously differentiable functions. Let S be the level surface (or curve) given by $g(x, y, z) = C$. Assume $\nabla g(x, y, z) \neq \vec{0}$. If f restricted to S has a local maximum or minimum at (x_0, y_0, z_0) , then there is a real number, λ (which might be 0), such that:

$$
\nabla f(x_0, y_0, z_0) = \lambda (\nabla g(x_0, y_0, z_0))
$$

In this case, we say (x_0, y_0, z_0) is a critical point of f restricted to S.

Proof: We have already seen that $\nabla g(x, y, z)$ is perpendicular to the tangent plane of S at $(x, y, z) \in S$, since:

$$
S = \{ (x, y, z) \in \mathbb{R}^3 \mid g(x, y, z) = C \}.
$$

This is true for any point $(x, y, z) \in S$.

Now, let's show if $f: \mathbb{R}^3 \to \mathbb{R}$ has a relative maximum or minimum at $(x_0, y_0, z_0) \in S$, then $\nabla f(x_0, y_0, z_0)$ is also perpendicular to the tangent plane to S at (x_0, y_0, z_0) .

Let $c(t) = \langle x(t), y(t), z(t) \rangle$ be any smooth curve on S where $c(0) = \langle x(0), y(0), z(0) \rangle = \langle x_0, y_0, z_0 \rangle$ is a relative maximum or minimum of f restricted to S .

Thus, $f(c(t)) = f(x(t), y(t), z(t))$ is a function of one variable, t.

By the Chain Rule:

$$
\frac{d}{dt}\left(f\left(x(t), y(t), z(t)\right)\right) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}
$$
\n
$$
= \nabla f \cdot \langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \rangle = \nabla f \cdot c'(t).
$$

From one variable calculus we know if f is differentiable and $t = 0$ is a relative maximum or minimum, then $\frac{d}{dt}(f)=0$, when $t=0.$

So at a relative maximum or minimum:

$$
0 = \nabla f(x(0), y(0), z(0)) \cdot c'(0).
$$

Thus, $\nabla f(x_0, y_0, z_0)$ is perpendicular to the tangent vector of every smooth curve on S that goes through (x_0, y_0, z_0) .

So ∇f is perpendicular to the tangent plane of S at (x_0, y_0, z_0) . Hence:

$$
\nabla f(x_0, y_0, z_0) = \lambda (\nabla g(x_0, y_0, z_0)).
$$

 λ is known as the **Lagrange multiplier** for f and g .

So when given a real-valued function $f(x, y, z)$ (or $f(x, y)$) and a constraint set $g(x, y, z) = C$ (or $g(x, y) = C$), to find relative maxima and minima of $f(x, y, z)$ restricted to S, given by $g(x, y, z) = C$ we solve for all points (x, y, z) such that:

$$
\nabla f(x, y, z) = \lambda (\nabla g(x, y, z))
$$

1. $\frac{\partial f}{\partial x} = \lambda \left(\frac{\partial g}{\partial x} \right)$ 2. $\frac{\partial f}{\partial y} = \lambda \left(\frac{\partial g}{\partial y} \right)$ 3. $\frac{\partial f}{\partial z} = \lambda \left(\frac{\partial g}{\partial z} \right)$ 4. $g(x, y, z) = C$.

So if $f: \mathbb{R}^3 \to \mathbb{R}$ and $g(x, y, z) = C$ is the constraint, then we will have to solve 4 equations in 4 unknowns (x, y, z, λ) .

If $f: \mathbb{R}^2 \to \mathbb{R}$ and $g(x, y) = C$ is the constraint, then we will have to solve 3 equations in 3 unknowns (x, y, λ) .

Ex. Maximize $f(x, y, z) = y + z$ subject to $x^2 + y^2 + z^2 = 1$.

Here, the constraint set, S , is the unit sphere:

$$
g(x, y, z) = x^2 + y^z + z^2 = 1.
$$

Since $f(x, y, z) = y + z$ is continuous and S is closed and bounded, there will be absolute maximum and minimum values of f on S .

$$
\nabla f = \langle f_x, f_y, f_z \rangle = \langle 0, 1, 1 \rangle
$$

$$
\nabla g = \langle 2x, 2y, 2z \rangle
$$

We get 3 equations from $\nabla f = \lambda(\nabla g)$:

1. $0 = 2\lambda x$

$$
2. \quad 1 = 2\lambda y
$$

3. $1 = 2\lambda z$

And we get a 4th equation from the constraint:

4. $x^2 + y^2 + z^2 = 1$.

From equation 2 ($1 = 2\lambda y$), we know $\lambda \neq 0$.

Thus, from equation 1 ($0 = 2\lambda x$), we can conclude $x = 0$.

From equations 2 and 3 we have: $2\lambda y = 2\lambda z$.

Since $\lambda \neq 0$, this means:

$$
y=z.
$$

Now use equation 4 $(x^2 + y^2 + z^2 = 1)$ and the fact that we know $x = 0$ and $y = z$ to get:

$$
(0)2 + y2 + z2 = 1
$$

$$
2y2 = 1
$$

$$
y = \pm \frac{1}{\sqrt{2}}.
$$

Notice: we never found λ , which is okay since we really want all points (x, y, z) that satisfy the 4 equations.

Thus,
$$
\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$
 and $\left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ are our critical points:

$$
f\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{2}{\sqrt{2}} = \sqrt{2}
$$

$$
f\left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = -\frac{2}{\sqrt{2}} = -\sqrt{2}.
$$

So, the absolute maximum value of f restricted to $x^2+y^z+z^2=1$ is $\sqrt{2}^-$ (at the point $\Big(0,\frac{1}{\sqrt{2}}\Big)$ $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$)

The absolute minimum value of f restricted to $x^2+y^2+z^2=1$ is $-\sqrt{2}$ (at the point $\Big(0,-\frac{1}{\sqrt{2}}\Big)$ $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$) . Ex. Find the extrema (maxima and minima) of $f(x, y) = x$ subject to $x^2 + 2y^2 = 3.$

In this example, $f: \mathbb{R}^2 \to \mathbb{R}$ is restricted to S , an ellipse, so we can write: $g(x, y) = x^2 + 2y^2 = 3.$

Since $f: \mathbb{R}^2 \to \mathbb{R}$ we will get 2 equations from $\nabla f = \lambda(\nabla g)$ plus 1 equation from the constraint, $x^2 + 2y^2 = 3$.

$$
\nabla f = \langle f_x, f_y \rangle = \langle 1, 0 \rangle
$$

$$
\nabla g = \langle g_x, g_y \rangle = \langle 2x, 4y \rangle
$$

$$
\nabla f = \lambda(\nabla g)
$$

1. $1 = 2\lambda x$

$$
2. \quad 0=4\lambda y
$$

3. $x^2 + 2y^2 = 3$

From equation 1, we know $\lambda \neq 0$. Thus, from equation 2, $y = 0$. Plugging in $y = 0$ into equation 3 we get:

$$
x^2 = 3 \Rightarrow x = \pm \sqrt{3}.
$$

Thus, the critical points are $(\sqrt{3},0)$, $(-\sqrt{3},0)$.

Notice: once again we don't need to find λ .

$$
f(\sqrt{3},0) = \sqrt{3}
$$

$$
f(-\sqrt{3},0) = -\sqrt{3}.
$$

Since S, an ellipse, is closed and bounded and $f(x, y) = x$ is continuous on S , f must take on its absolute maximum and minimum values. Thus, the absolute maximum value of f on S is $\sqrt{3}$ and the absolute minimum value of f on S is $-\sqrt{3}$.

Ex. Assume that among all rectangular boxes with a surface area of $54m^2$ there is a box of largest possible volume. Find its dimensions.

We want to maximize the volume:

$$
f(x, y, z) = xyz
$$

Subject to:

$$
g(x, y, z) = 2xy + 2xz + 2yz = 54.
$$

\n
$$
\nabla f = \langle yz, xz, xy \rangle
$$

\n
$$
\nabla g = \langle 2y + 2z, 2x + 2z, 2x + 2y \rangle
$$

So $\nabla f = \lambda(\nabla g)$ gives us the following equations:

- 1. $yz = 2\lambda(y + z)$
- 2. $xz = 2\lambda(x + z)$
- 3. $xy = 2\lambda(x + y)$

The constraint gives the $4th$ equation:

4. $2xy + 2xz + 2yz = 54$ i.e. $xy + xz + yz = 27$. Notice that $x \neq 0$, $y \neq 0$, $z \neq 0$, otherwise $f(x, y, z) = 0$. Solve equations 1, 2, and 3 for 2λ :

1.
$$
\frac{yz}{y+z} = 2\lambda
$$

2.
$$
\frac{xz}{x+z} = 2\lambda
$$

3.
$$
\frac{xy}{x+y} = 2\lambda
$$

Setting equations 1 and 2 equal to each other:

$$
\frac{yz}{y+z} = \frac{xz}{x+z}
$$

(x + z)(yz) = xz(y + z)

$$
yz^2 = xz^2
$$

$$
y = x \quad \text{(since } z \neq 0\text{).}
$$

Similarly, setting equations 2 and 3 equal to each other:

$$
\frac{xz}{x+z} = \frac{xy}{x+y}
$$

$$
(x+y)(xz) = (xy)(x+z)
$$

$$
x^2z = x^2y
$$

$$
z = y \text{ (since } x \neq 0).
$$

Thus $x = y = z$. Now plug into equation 4:

$$
xy + xz + yz = 27
$$

$$
x2 + x2 + x2 = 27
$$

$$
3x2 = 27
$$

$$
x = \pm 3.
$$

So the dimensions that maximize the volume are: $3m \times 3m \times 3m$.

Def. Let $U \subseteq \mathbb{R}^n$, $n=2$ or 3 , U is open with a boundary $\partial U.$ We say $\boldsymbol{\partial} \boldsymbol{U}$ **is smooth** if ∂U is the level set of a smooth function, g , whose gradient $\nabla g \neq 0.$

Lagrange Multiplier Strategy for Finding Absolute Maxima and Minima on Bounded Regions, U :

- 1. Locate all critical points of f in U (i.e. $\nabla f = 0$)
- 2. Use Lagrange multipliers to find all critical points of f on ∂U (i.e. $\nabla f = \lambda(\nabla g)$)
- 3. Compute the values of f at all of the critical points
- 4. Select the largest and smallest values
- Ex. Find the absolute maximum and minimum values of

$$
f(x, y, z) = x^2 + y^2 + z^2 + x - z
$$

on the set:

$$
D = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}.
$$

Here $D = U \cup (\partial U)$ where:

$$
U = \{(x, y, z) | x^2 + y^2 + z^2 < 1 \}
$$
\n
$$
\partial U = \{(x, y, z) | x^2 + y^2 + z^2 = 1 \}.
$$

1. Start by finding all critical points of f in U :

$$
\nabla f = \langle f_x, f_y, f_x \rangle = \langle 2x + 1, 2y, 2z - 1 \rangle
$$

\n
$$
f_x = 2x + 1 = 0 \implies x = -\frac{1}{2}
$$

\n
$$
f_y = 2y = 0 \implies y = 0
$$

\n
$$
f_z = 2z - 1 = 0 \implies z = \frac{1}{2}
$$

\nCritical point in $U: (-\frac{1}{2}, 0, \frac{1}{2})$.

2. Find all critical points on $\partial U = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}.$ $g(x, y, z) = x^2 + y^2 + z^2 = 1$ $\nabla g = \langle g_x, g_y, g_z \rangle = \langle 2x, 2y, 2z \rangle$

$$
\nabla f = \lambda(\nabla g) :
$$

\n1.
$$
2x + 1 = 2\lambda x
$$

\n2.
$$
2y = 2\lambda y
$$

\n3.
$$
2z - 1 = 2\lambda z
$$

\n4.
$$
x^2 + y^2 + z^2 = 1
$$

Notice $\lambda \neq 1$ since if $\lambda = 1$, then by equation 1: $2x + 1 = 2x$, which has no solution.

Since $\lambda \neq 1$, by equation 2:

$$
2y = 2\lambda y \implies y = 0.
$$

Plugging into equation 4, we get:

$$
x^2 + z^2 = 1.
$$

Now solve equations 1 and 3 for 2λ:

1.
$$
\frac{2x+1}{x} = 2\lambda
$$

2.
$$
\frac{2z-1}{z} = 2\lambda
$$

Setting these equations equal to each other:

$$
\frac{2x+1}{x} = \frac{2z-1}{z}
$$

$$
z(2x+1) = (2z-1)x
$$

$$
z = -x.
$$

Now plug this into equation 4 with $y = 0$:

$$
x^{2} + z^{2} = 1
$$

\n
$$
x^{2} + (-x)^{2} = 1
$$

\n
$$
2x^{2} = 1
$$

\n
$$
x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2}.
$$

So the critical points on ∂U are:

$$
\left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}\right); \quad \left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right).
$$

3. Now find the values of f at all of the critical points.

$$
f\left(-\frac{1}{2}, 0, \frac{1}{2}\right) = \frac{1}{4} + \frac{1}{4} - \frac{1}{2} - \frac{1}{2} = -\frac{1}{2}
$$

$$
f\left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 1 + \frac{2}{\sqrt{2}} = 1 + \sqrt{2}
$$

$$
f\left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right) = \frac{1}{2} + \frac{1}{2} - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 1 - \frac{2}{\sqrt{2}} = 1 - \sqrt{2}.
$$

The absolute maximum of f is $1+\sqrt{2} \quad$ (at the point $\left(\frac{\sqrt{2}}{2}\right)$ $\frac{\sqrt{2}}{2}$, 0, $-\frac{\sqrt{2}}{2}$ $\left(\frac{2}{2}\right)$). The absolute minimum of f is $-\frac{1}{2}$ $\frac{1}{2}$ (at the point $\left(-\frac{1}{2}\right)$ $\frac{1}{2}$, 0, $\frac{1}{2}$ $\frac{1}{2}$).

- Ex. Find the points where $f(x,y) = x^2 + xy + y^2$ subject to $x^2 + y^2 \le 1$ attains its maximum and minimum values. Find those values.
- 1. Find the critical points of $f(x, y) = x^2 + xy + y^2$ for $\{(x, y) | x^2 + y^2 < 1\}.$ $f_x = 2x + y = 0 \implies y = -2x$ $f_y = 2y + x = 0 \implies 2(-2x) + x = 0 \implies x = 0, y = 0.$ Only critical point is $(0,0)$.
- 2. Find all critical points on the boundary, $\{(x, y) | x^2 + y^2 = 1\}.$ So $g(x, y) = x^2 + y^2 = 1$. $\nabla g = \langle g_x, g_y \rangle = \langle 2x, 2y \rangle$ $\nabla f = \langle f_x, f_y \rangle = \langle 2x + y, 2y + x \rangle.$

 $\nabla f = \lambda(\nabla g)$: 1. $2x + y = 2\lambda x$ 2. $2v + x = 2\lambda v$ 3. $x^2 + y^2 = 1$

 $x \neq 0$, since from equation 1, if $x = 0$ then $y = 0$, but that doesn't satisfy equation 3, $x^2 + y^2 = 1$.

 $y \neq 0$, since from equation 2, if $y = 0$ then $x = 0$.

Now solve equations 1 and 2 for 2λ :

1.
$$
\frac{2x+y}{x} = 2\lambda
$$

2.
$$
\frac{2y+x}{y} = 2\lambda.
$$

Setting the expressions for 2λ equal to each other:

$$
\frac{2x+y}{x} = \frac{2y+x}{y}
$$

$$
y(2x + y) = x(2y + x)
$$

$$
2xy + y^2 = 2xy + x^2
$$

$$
y^2 = x^2
$$

$$
y = \pm x.
$$

Now plug $y = \pm x$ into $x^2 + y^2 = 1$. $x^2 + x^2 = 1 \implies 2x^2 = 1 \implies x = \pm \frac{\sqrt{2}}{2}$ $\frac{1}{2}$.

Thus the critical points on the set
$$
\{(x, y) | x^2 + y^2 = 1\}
$$
 are:
 $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \quad \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \quad \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \quad \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right).$

3. Find the value of f at all critical points.

$$
f(0,0) = 0
$$

\n
$$
f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}
$$

\n
$$
f\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2}
$$

\n
$$
f\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2}
$$

\n
$$
f\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}.
$$

So the minimum value occurs at $(0,0)$ and the minimum value is 0. The maximum value occurs at $\left(\frac{\sqrt{2}}{2}\right)$ $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{2}}{2}$ $\binom{2}{2}$ and $\left(-\frac{\sqrt{2}}{2}\right)$ $\frac{2}{2}$, $-\frac{\sqrt{2}}{2}$ $\left(\frac{2}{2}\right)$ and the maximum value is $\frac{3}{2}$.