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Lagrange Multipliers  
 
 In the previous section, we saw how to find the absolute maximum and 
minimum of a real-valued function, 𝑓(𝑥, 𝑦), on a bounded domained, 𝐷 ⊆ ℝ2, 
where the boundary of 𝐷 is a curve we can parametrize. Now we want to be able 
to find the absolute maximum and minimum of a real-valued function, 𝑓(𝑥, 𝑦), on 
a general smooth curve in ℝ2 given by 𝑔(𝑥, 𝑦) = 𝐶. 
 
 
 
 
 
 
 
 
 
 

 
 
In addition, we would like to be able to find the absolute maximum and 

minimum of a real-valued function, 𝑓(𝑥, 𝑦, 𝑧), on a general smooth surface in ℝ3 
given by 𝑔(𝑥, 𝑦, 𝑧) = 𝐶. 
 
 
 
 
 
 
 
 
 
 
 

 
For example, suppose we want to know the maximum value of   

𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑧 subject to the constraint that (𝑥, 𝑦, 𝑧) must lie on the unit 
sphere, 𝑥2 + 𝑦2 + 𝑧2 = 1. Let’s call this constraint set 𝑆.  

 

𝑔(𝑥, 𝑦) = 𝐶 

𝑔(𝑥, 𝑦, 𝑧) = 𝐶 



 2 

Notice that even for functions of 1 variable, a continuous function need not 
have a maximum or minimum value. For example, 𝑓(𝑥) = 𝑥 doesn’t have a 
maximum or minimum value if 𝑥 ∈ ℝ or if 0 < 𝑥 < 1.  However, if the constraint 
set 𝑆 is closed and bounded, and 𝑓 is a continuous function, then 𝑓 does have a 
maximum and a minimum value on 𝑆. 

We know for a real-valued function, 𝑓:ℝ3 → ℝ, we search for relative 
maxima and minima at points where ∇𝑓(𝑥0, 𝑦0, 𝑧0) = 0, where (𝑥0, 𝑦0, 𝑧0) ∈ ℝ3. 
These are critical points. Now, we want to find maxima and minima for 𝑓(𝑥, 𝑦, 𝑧) 
when its domain is restricted to a level surface, 𝑆, in ℝ3 given by 𝑔(𝑥, 𝑦, 𝑧) = 𝐶. 

 
 

Theorem (The Method of Lagrange Multipliers): 

Suppose 𝑓: 𝑈 ⊆ ℝ𝑛 → ℝ and 𝑔:ℝ𝑛 → ℝ, where 𝑛 = 2 or 3 are 

continuously differentiable functions. Let 𝑆 be the level surface (or curve) given 

by 𝑔(𝑥, 𝑦, 𝑧) = 𝐶. Assume ∇𝑔(𝑥, 𝑦, 𝑧) ≠ 0⃗ . If 𝑓 restricted to 𝑆 has a local 

maximum or minimum at (𝑥0, 𝑦0, 𝑧0), then there is a real number, 𝜆 (which 

might be 0), such that: 
 

∇𝑓(𝑥0, 𝑦0, 𝑧0) = 𝜆(∇𝑔(𝑥0, 𝑦0, 𝑧0)) 
 

In this case, we say (𝑥0, 𝑦0, 𝑧0) is a critical point of 𝑓 restricted to 𝑆. 
 

 
Proof:  We have already seen that ∇𝑔(𝑥, 𝑦, 𝑧) is perpendicular to the       

tangent plane of 𝑆 at (𝑥, 𝑦, 𝑧) ∈ 𝑆, since: 
 

𝑆 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|  𝑔(𝑥, 𝑦, 𝑧) = 𝐶}. 
 

This is true for any point (𝑥, 𝑦, 𝑧) ∈ 𝑆.  
 

Now, let’s show if 𝑓:ℝ3 → ℝ has a relative maximum or minimum at 

(𝑥0, 𝑦0, 𝑧0) ∈ 𝑆, then ∇𝑓(𝑥0, 𝑦0, 𝑧0) is also perpendicular to the tangent plane 

to 𝑆 at (𝑥0, 𝑦0, 𝑧0). 



 3 

Let 𝑐(𝑡) = < 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) > be any smooth curve on 𝑆 where         

𝑐(0) = < 𝑥(0), 𝑦(0), 𝑧(0) > = < 𝑥0, 𝑦0, 𝑧0 > is a relative maximum or 

minimum of 𝑓 restricted to 𝑆. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Thus, 𝑓(𝑐(𝑡)) = 𝑓(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is a function of one variable, 𝑡. 

 

 

By the Chain Rule: 
𝑑

𝑑𝑡
(𝑓(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))) =

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝑓

𝜕𝑧

𝑑𝑧

𝑑𝑡
  

 

= ∇𝑓 ∙<
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
> = ∇𝑓 ∙ 𝑐′(𝑡).  

 

 From one variable calculus we know if 𝑓 is differentiable and 𝑡 = 0 is a    

          relative maximum or minimum, then 
𝑑

𝑑𝑡
(𝑓) = 0, when  𝑡 = 0. 

 

 So at a relative maximum or minimum: 

0 = ∇𝑓(𝑥(0), 𝑦(0), 𝑧(0)) ∙ 𝑐′(0). 

𝑔(𝑥, 𝑦, 𝑧) = 𝐶
= 𝐶 

𝑆 

𝑐(𝑡) = < 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) > 

< 𝑥0, 𝑦0, 𝑧0 > 
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 Thus, ∇𝑓(𝑥0, 𝑦0, 𝑧0) is perpendicular to the tangent vector of every 

           smooth curve on 𝑆 that goes through (𝑥0, 𝑦0, 𝑧0).  

 

          So ∇𝑓 is perpendicular to the tangent plane of 𝑆 at (𝑥0, 𝑦0, 𝑧0). 

          Hence: 

                            ∇𝑓(𝑥0, 𝑦0, 𝑧0) = 𝜆(∇𝑔(𝑥0, 𝑦0, 𝑧0)). 
 

 𝜆 is known as the Lagrange multiplier for 𝑓 and 𝑔. 

 
 

 So when given a real-valued function 𝑓(𝑥, 𝑦, 𝑧) (or 𝑓(𝑥, 𝑦)) and a 

 constraint set 𝑔(𝑥, 𝑦, 𝑧) = 𝐶 (or 𝑔(𝑥, 𝑦) = 𝐶), to find relative 

 maxima and minima of 𝑓(𝑥, 𝑦, 𝑧) restricted to 𝑆, given by 

 𝑔(𝑥, 𝑦, 𝑧) = 𝐶 we solve for all points (𝑥, 𝑦, 𝑧) such that: 
 

∇𝑓(𝑥, 𝑦, 𝑧) = 𝜆(∇𝑔(𝑥, 𝑦, 𝑧)) 
 

1.    
𝜕𝑓

𝜕𝑥
= 𝜆 (

𝜕𝑔

𝜕𝑥
) 

2.    
𝜕𝑓

𝜕𝑦
= 𝜆 (

𝜕𝑔

𝜕𝑦
) 

3.   
  𝜕𝑓

𝜕𝑧
= 𝜆 (

𝜕𝑔

𝜕𝑧
) 

4.    𝑔(𝑥, 𝑦, 𝑧) = 𝐶. 

 

So if 𝑓:ℝ3 → ℝ and 𝑔(𝑥, 𝑦, 𝑧) = 𝐶 is the constraint, then we will have 

to solve 4 equations in 4 unknowns (𝑥, 𝑦, 𝑧, 𝜆). 

 

 If 𝑓:ℝ2 → ℝ and 𝑔(𝑥, 𝑦) = 𝐶 is the constraint, then we will have to  

           solve 3 equations in 3 unknowns (𝑥, 𝑦, 𝜆). 
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Ex.  Maximize 𝑓(𝑥, 𝑦, 𝑧) = 𝑦 + 𝑧 subject to 𝑥2 + 𝑦𝑧 + 𝑧2 = 1. 

 

Here, the constraint set, 𝑆, is the unit sphere:  
 

𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦𝑧 + 𝑧2 = 1. 
 

Since 𝑓(𝑥, 𝑦, 𝑧) = 𝑦 + 𝑧 is continuous and 𝑆 is closed and bounded, 

there will be absolute maximum and minimum values of 𝑓 on 𝑆. 

∇𝑓 = < 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧 > = < 0, 1, 1 > 
 

                               ∇𝑔 = < 2𝑥, 2𝑦, 2𝑧 > 
 

 

We get 3 equations from ∇𝑓 = 𝜆(∇𝑔): 

1.    0 = 2𝜆𝑥 

2.    1 = 2𝜆𝑦 

3.    1 = 2𝜆𝑧 
 

 

And we get a 4th equation from the constraint: 

4.    𝑥2 + 𝑦𝑧 + 𝑧2 = 1. 

 
 

From equation 2 (1 = 2𝜆𝑦), we know 𝜆 ≠ 0. 
 

Thus, from equation 1 (0 = 2𝜆𝑥), we can conclude 𝑥 = 0. 

 
 

From equations 2 and 3 we have: 

                            2𝜆𝑦 = 2𝜆𝑧. 

 

Since 𝜆 ≠ 0, this means: 

                                 𝑦 = 𝑧. 
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Now use equation 4 (𝑥2 + 𝑦𝑧 + 𝑧2 = 1) and the fact that we know    

𝑥 = 0 and 𝑦 = 𝑧 to get: 
 

                          (0)2 + 𝑦2 + 𝑧2 = 1 
 

2𝑦2 = 1 
 

            𝑦 = ±
1

√2
 . 

 

 Notice: we never found 𝜆, which is okay since we really want all points  

            (𝑥, 𝑦, 𝑧) that satisfy the 4 equations. 

 
  

 Thus, (0,
1

√2
 ,

1

√2
) and (0, −

1

√2
, −

1

√2
) are our critical points:    

 

                                           𝑓 (0,
1

√2
 ,

1

√2
) =

2

√2
= √2  

 

    𝑓 (0, −
1

√2
, −

1

√2
) = −

2

√2
= −√2 . 

 

 

 So, the absolute maximum value of 𝑓 restricted to  

𝑥2 + 𝑦𝑧 + 𝑧2 = 1 is √2    (at the point (0,
1

√2
 ,

1

√2
)) 

 

 

The absolute minimum value of 𝑓 restricted to  

𝑥2 + 𝑦𝑧 + 𝑧2 = 1 is −√2    (at the point (0, −
1

√2
, −

1

√2
)) . 
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Ex.  Find the extrema (maxima and minima) of 𝑓(𝑥, 𝑦) = 𝑥 subject to            

       𝑥2 + 2𝑦2 = 3. 

 
 

 In this example, 𝑓:ℝ2 → ℝ is restricted to 𝑆, an ellipse, so we can write:  

           𝑔(𝑥, 𝑦) = 𝑥2 + 2𝑦2 = 3. 

 

 

 

 

 

 

 

 

 

Since 𝑓:ℝ2 → ℝ we will get 2 equations from ∇𝑓 = 𝜆(∇𝑔) plus 1 

equation from the constraint, 𝑥2 + 2𝑦2 = 3. 
 

                               ∇𝑓 = < 𝑓𝑥 , 𝑓𝑦 > = < 1, 0 >  
 

∇𝑔 = < 𝑔𝑥 , 𝑔𝑦 > = < 2𝑥, 4𝑦 > 
 

                               ∇𝑓 = 𝜆(∇𝑔) 

1.    1 = 2𝜆𝑥 

2.    0 = 4𝜆𝑦 

3.    𝑥2 + 2𝑦2 = 3 
 

From equation 1, we know 𝜆 ≠ 0. Thus, from equation 2, 𝑦 = 0. 

Plugging in 𝑦 = 0 into equation 3 we get: 

𝑥2 = 3  ⇒   𝑥 = ±√3. 
 

Thus, the critical points are (√3, 0), (−√3, 0). 

𝑥2 + 2𝑦2 = 3 
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Notice: once again we don’t need to find 𝜆. 

𝑓(√3, 0) = √3 

                                           𝑓(−√3, 0) = −√3. 
 

 

Since 𝑆, an ellipse, is closed and bounded and 𝑓(𝑥, 𝑦) = 𝑥 is continuous 

on 𝑆, 𝑓 must take on its absolute maximum and minimum values. Thus, the 

absolute maximum value of 𝑓 on 𝑆 is √3 and the absolute minimum value 

of 𝑓 on 𝑆 is  −√3. 

 

 

Ex.     Assume that among all rectangular boxes with a surface area of 54𝑚2 there  

          is a box of largest possible volume. Find its dimensions. 

 

 We want to maximize the volume: 

𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 
Subject to: 

    𝑔(𝑥, 𝑦, 𝑧) = 2𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 = 54. 
 

                ∇𝑓 = < 𝑦𝑧, 𝑥𝑧, 𝑥𝑦 > 
 

                ∇𝑔 = < 2𝑦 + 2𝑧, 2𝑥 + 2𝑧, 2𝑥 + 2𝑦 > 
 

So ∇𝑓 = λ(∇𝑔) gives us the following equations: 

1.    𝑦𝑧 = 2λ(𝑦 + 𝑧) 

2.    𝑥𝑧 = 2λ(𝑥 + 𝑧) 

3.    𝑥𝑦 = 2λ(𝑥 + 𝑦) 
 

The constraint gives the 4th equation:  

4.    2𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 = 54  i.e. 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 = 27. 

Notice that 𝑥 ≠ 0, 𝑦 ≠ 0, 𝑧 ≠ 0, otherwise 𝑓(𝑥, 𝑦, 𝑧) = 0. 

 

 
 

𝑥 

𝑦 

𝑧 
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Solve equations 1, 2, and 3 for 2λ: 

1.    
𝑦𝑧

𝑦+𝑧
= 2λ 

2.     
𝑥𝑧

𝑥+𝑧
= 2λ 

3.     
𝑥𝑦

𝑥+𝑦
= 2λ 

Setting equations 1 and 2 equal to each other: 
𝑦𝑧

𝑦+𝑧
=

𝑥𝑧

𝑥+𝑧
  

                                   (𝑥 + 𝑧)(𝑦𝑧) = 𝑥𝑧(𝑦 + 𝑧) 

𝑦𝑧2 = 𝑥𝑧2 

   𝑦 = 𝑥      (since 𝑧 ≠ 0).  

  

Similarly, setting equations 2 and 3 equal to each other: 
𝑥𝑧

𝑥+𝑧
=

𝑥𝑦

𝑥+𝑦
  

(𝑥 + 𝑦)(𝑥𝑧) = (𝑥𝑦)(𝑥 + 𝑧) 

𝑥2𝑧 = 𝑥2𝑦 

   𝑧 = 𝑦    (since  𝑥 ≠ 0).  

  
 

Thus 𝑥 = 𝑦 = 𝑧. Now plug into equation 4: 

 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 = 27 

𝑥2 + 𝑥2 + 𝑥2 = 27 

                  3𝑥2 = 27 

                                                                 𝑥 = ±3.    

 

So the dimensions that maximize the volume are: 

 3𝑚 ×  3𝑚 × 3𝑚. 
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Global Maxima and Minima on Bounded Regions 

 

Def.  Let 𝑈 ⊆ ℝ𝑛, 𝑛 = 2 or 3, 𝑈 is open with a boundary 𝜕𝑈. We say 𝝏𝑼  

          is smooth if 𝜕𝑈 is the level set of a smooth function, 𝑔, whose  gradient    

          ∇𝑔 ≠ 0. 

 

 

 

Lagrange Multiplier Strategy for Finding Absolute Maxima and Minima on 

Bounded Regions, 𝑈: 

1. Locate all critical points of 𝑓 in 𝑈 (i.e. ∇𝑓 = 0) 

2. Use Lagrange multipliers to find all critical points of 𝑓 on 𝜕𝑈                 

(i.e. ∇𝑓 = 𝜆(∇𝑔)) 

3. Compute the values of 𝑓 at all of the critical points 
4. Select the largest and smallest values 

 

 

Ex.  Find the absolute maximum and minimum values of  

𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 + 𝑥 − 𝑧 
on the set: 

𝐷 = {(𝑥, 𝑦, 𝑧)| 𝑥2 + 𝑦2 + 𝑧2 ≤ 1}. 

 
 

Here 𝐷 = 𝑈 ⋃( 𝜕𝑈) where: 
 

𝑈 = {(𝑥, 𝑦, 𝑧)| 𝑥2 + 𝑦2 + 𝑧2 < 1} 
 

𝜕𝑈 = {(𝑥, 𝑦, 𝑧)| 𝑥2 + 𝑦2 + 𝑧2 = 1}. 
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1. Start by finding all critical points of 𝑓 in 𝑈: 
 

∇𝑓 = < 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑥 > = < 2𝑥 + 1,   2𝑦,   2𝑧 − 1 > 
 

                𝑓𝑥 = 2𝑥 + 1 = 0      ⇒     𝑥 = −
1

2
   

 

                𝑓𝑦 = 2𝑦 = 0              ⇒     𝑦 = 0  
 

                 𝑓𝑧 = 2𝑧 − 1 = 0      ⇒     𝑧 =
1

2
 

 

Critical point in 𝑈: (−
1

2
, 0,

1

2
).  

 
 

2. Find all critical points on 𝜕𝑈 = {(𝑥, 𝑦, 𝑧)| 𝑥2 + 𝑦2 + 𝑧2 = 1}. 
 

          𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 = 1 
 

∇𝑔 = < 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧 > = < 2𝑥, 2𝑦, 2𝑧 > 

 
 

     ∇𝑓 = λ(∇𝑔) : 

 1.    2𝑥 + 1 = 2λ𝑥 

  2.            2𝑦 = 2λ𝑦 

  3.     2𝑧 − 1 = 2λ𝑧 

4.    𝑥2 + 𝑦2 + 𝑧2 = 1. 

 

 

  Notice λ ≠ 1 since if λ = 1, then by equation 1:  

2𝑥 + 1 = 2𝑥, which has no solution. 
 

Since λ ≠ 1, by equation 2: 

2𝑦 = 2λ𝑦 ⟹   𝑦 = 0. 
 

Plugging into equation 4, we get: 

𝑥2 + 𝑧2 = 1. 
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  Now solve equations 1 and 3 for 2λ: 

1.    
2𝑥+1

𝑥
= 2λ 

2.    
2𝑧−1

𝑧
= 2λ 

 

Setting these equations equal to each other: 
2𝑥+1

𝑥
=

2𝑧−1

𝑧
  

𝑧(2𝑥 + 1) = (2𝑧 − 1)𝑥 

                                                            𝑧 = −𝑥. 

 
 

Now plug this into equation 4 with 𝑦 = 0: 

𝑥2 + 𝑧2 = 1 

                                               𝑥2 + (−𝑥)2 = 1 

                                                              2𝑥2 = 1 

                                                                   𝑥 = ±√
1

2
= ±

√2

2
 . 

 

 So the critical points on 𝜕𝑈 are: 

(
√2

2
, 0, −

√2

2
) ;       (−

√2

2
, 0,

√2

2
 ).  

 

 

3. Now find the values of 𝑓 at all of the critical points. 

                𝑓 (−
1

2
, 0,

1

2
) =

1

4
+

1

4
−

1

2
−

1

2
= −

1

2
  

 

𝑓 (
√2

2
, 0, −

√2

2
) =

1

2
+

1

2
+

1

√2
+

1

√2
= 1 +

2

√2
= 1 + √2  

 

𝑓 (−
√2

2
, 0,

√2

2
 ) =

1

2
+

1

2
−

1

√2
−

1

√2
= 1 −

2

√2
= 1 − √2.  
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The absolute maximum of 𝑓 is 1 + √2    (at the point (
√2

2
, 0,−

√2

2
)). 

 

The absolute minimum of 𝑓 is −
1

2
    (at the point (−

1

2
, 0,

1

2
)). 

 

 

Ex.  Find the points where 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2 subject to 𝑥2 + 𝑦2 ≤ 1       

      attains its maximum and minimum values.  Find those values. 

 

 

 

      1.  Find the critical points of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2 for               

           {(𝑥, 𝑦)|  𝑥2 + 𝑦2 < 1}. 

𝑓𝑥 = 2𝑥 + 𝑦 = 0 ⟹    𝑦 = −2𝑥  

𝑓𝑦 = 2𝑦 + 𝑥 = 0 ⟹    2(−2𝑥) + 𝑥 = 0 ⟹   𝑥 = 0, 𝑦 = 0. 

  Only critical point is (0,0).  

 

 

        2.  Find all critical points on the boundary, {(𝑥, 𝑦)| 𝑥2 + 𝑦2 = 1}. 

                            So  𝑔(𝑥, 𝑦) = 𝑥2 + 𝑦2 = 1.                 

                                  ∇𝑔 = < 𝑔𝑥 , 𝑔𝑦 > = < 2𝑥, 2𝑦 >                                    

                                  ∇𝑓 = < 𝑓𝑥 , 𝑓𝑦 > = < 2𝑥 + 𝑦, 2𝑦 + 𝑥 >.  

 

     ∇𝑓 = λ(∇𝑔) : 

 1.    2𝑥 + 𝑦 = 2λ𝑥 

  2.    2𝑦 + 𝑥 = 2λ𝑦 

  3.     𝑥2 + 𝑦2 = 1 
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                   𝑥 ≠ 0, since from equation 1, if 𝑥 = 0 then 𝑦 = 0, but that  

                   doesn’t satisfy equation 3, 𝑥2 + 𝑦2 = 1. 

 

                   𝑦 ≠ 0, since from equation 2, if 𝑦 = 0 then 𝑥 = 0. 

 

                    Now solve equations 1 and 2 for 2λ: 

                    1.      
2𝑥+𝑦

𝑥
= 2λ 

                    2.      
2𝑦+𝑥

𝑦
= 2λ. 

 

           Setting the expressions for 2λ equal to each other:   

                                            
2𝑥+𝑦

𝑥
=

2𝑦+𝑥

𝑦
 

                                   𝑦(2𝑥 + 𝑦) = 𝑥(2𝑦 + 𝑥) 

                                     2𝑥𝑦 + 𝑦2 = 2𝑥𝑦 + 𝑥2 

                                                  𝑦2 = 𝑥2 

                                                    𝑦 = ±𝑥. 

 

            Now plug 𝑦 = ±𝑥 into 𝑥2 + 𝑦2 = 1. 

                      𝑥2 + 𝑥2 = 1 ⟹   2𝑥2 = 1 ⟹    𝑥 = ±
√2

2
 . 

 

 

             Thus the critical points on the set {(𝑥, 𝑦)| 𝑥2 + 𝑦2 = 1} are: 

                    (
√2

2
,
√2

2
),      (

√2

2
, −

√2

2
),      (−

√2

2
,
√2

2
),    (−

√2

2
, −

√2

2
).  
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       3.  Find the value of 𝑓 at all critical points. 

 

            𝑓(0,0) = 0 

            𝑓 (
√2

2
,
√2

2
) =

1

2
+

1

2
+

1

2
=

3

2
 

            𝑓 (
√2

2
, −

√2

2
) =

1

2
−

1

2
+

1

2
=

1

2
 

            𝑓 (−
√2

2
,
√2

2
) =

1

2
−

1

2
+

1

2
=

1

2
 

            𝑓 (−
√2

2
, −

√2

2
) =

1

2
+

1

2
+

1

2
=

3

2
 . 

 

        So the minimum value occurs at (0,0) and the minimum value is 0. 

         The maximum value occurs at (
√2

2
,
√2

2
) and (−

√2

2
, −

√2

2
) and the  

         maximum value is 
3

2
 . 

 


