Directional Derivatives and Gradients- HW Problems

Find the directional derivative at the given point in the direction of \vec{v} .

- 1. $f(x,y) = e^{xy} + x^2 + y^2$ at (1,2), $\vec{v} = -4\vec{\iota} + 3\vec{j}$
- 2. $f(x,y) = xy^2 + x^3y$ at (-1,1), $\vec{v} = \vec{\iota} + \vec{j}$
- 3. $f(x, y, z) = x^3 y^2 + e^{(y+z)} 2x sin(z)$ at (1,0,0), $\vec{v} = 2\vec{\iota} 2\vec{j} + \vec{k}$

4. Find a vector perpendicular to the curve $x^2 - 2xy + y^3 = 5$ at (1,2).

Find the tangent plane and normal line to the surface at the given point.

5. $x^2 + y^2 - z^2 + 2xy - 2xz = 2$ at (-1, 2, 1).

6.
$$xe^y + y^2 + z^2 = 7$$
 at $(-2, 0, 3)$

7. The electrical potential V at a point in space is given by $V(x, y, z) = 4x^2 + 2xz - xyz$.

a. Find the rate of change of *V* at the point A(1, 2, -3) in the direction $\vec{v} = \vec{\iota} - \vec{j} + \vec{k}$.

b. In which direction does V change the fastest at A(1, 2, -3)?

c. What is the maximum rate of change of V at A(1, 2, -3)?