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Integration by Parts 
 
 

Integration by parts is a method of integration that is related to the product rule 
for differentiation.  
 

                        
𝑑

𝑑𝑥
(𝑢(𝑥)𝑣(𝑥)) = 𝑢(𝑥)𝑣′(𝑥) + 𝑣(𝑥)𝑢′(𝑥)  

 

   ∫
𝑑

𝑑𝑥
(𝑢(𝑥)𝑣(𝑥)) 𝑑𝑥 = ∫ 𝑢(𝑥)𝑣′(𝑥) 𝑑𝑥 + ∫ 𝑣(𝑥)𝑢′(𝑥) 𝑑𝑥  

 

                     𝑢(𝑥)𝑣(𝑥) = ∫ 𝑢(𝑥)𝑣′(𝑥) 𝑑𝑥 + ∫ 𝑣(𝑥)𝑢′(𝑥) 𝑑𝑥  
 

∫ 𝑢(𝑥)𝑣′(𝑥) 𝑑𝑥 = 𝑢(𝑥)𝑣(𝑥) − ∫ 𝑣(𝑥)𝑢′(𝑥) 𝑑𝑥  
 
 

∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢  
 
 

Ex.  Evaluate ∫ 𝑥𝑒𝑥  𝑑𝑥.  
 
 

Let   𝑢 = 𝑥               𝑣 = 𝑒𝑥 
     𝑑𝑢 = 𝑑𝑥          𝑑𝑣 = 𝑒𝑥𝑑𝑥 
 

∫ 𝑥𝑒𝑥𝑑𝑥 = 𝑥𝑒𝑥 − ∫ 𝑒𝑥𝑑𝑥 = 𝑥𝑒𝑥 − 𝑒𝑥 + 𝐶. 

 
One goal when integrating by parts is for ∫ 𝑣 𝑑𝑢 to be “simpler” than ∫ 𝑢 𝑑𝑣. 
 

For example, in this last problem we could have let: 
 

𝑢 = 𝑒𝑥                     𝑣 =
1

2
𝑥2  

         𝑑𝑢 = 𝑒𝑥𝑑𝑥             𝑑𝑣 = 𝑥 𝑑𝑥 
 

∫ 𝑥𝑒𝑥𝑑𝑥 =
1

2
𝑥2𝑒𝑥 − ∫

1

2
𝑥2𝑒𝑥𝑑𝑥  

 

Thus, we started with ∫ 𝑥𝑒𝑥𝑑𝑥 and after integrating by parts we are left with 

having to calculate  
1

2
∫ 𝑥2𝑒𝑥𝑑𝑥, which is not a “simpler” integral. 



2 
 

One of the biggest challenges when trying to evaluate an integral is deciding 

which method to use (𝑢 substitution, integration by parts, or some other 
method?). Unfortunately, there are no universal rules (that would work in all 
situations) for when to use a given method of integration. However, there are 
situations where one should think about using a given method of integration. 
 

One should generally consider simpler methods of integration (e.g. a 𝒖 
substitution) before using a more complex method (e.g. integration by parts). 
Having said that here are two situations where you might want to think about 
using integration by parts: 
 

1) Integrating the product of two “dissimilar” functions such as:     

        ∫ 𝑥𝑒𝑥𝑑𝑥 ;    ∫(sin 𝑥) 𝑒𝑥𝑑𝑥 ;      ∫ 𝑥2 cos 𝑥 𝑑𝑥 ;  etc. 
 

2) When you have no idea what method to use: 

                      ∫ ln 𝑥 𝑑𝑥 ;   ∫ tan−1 𝑥 𝑑𝑥 ;   etc. 

 
 
Ex.  Evaluate ∫ tan−1 𝑥 𝑑𝑥. 
 
 

Let   𝑢 = tan−1 𝑥              𝑣 = 𝑥 

     𝑑𝑢 =
1

1+𝑥2 𝑑𝑥           𝑑𝑣 = 𝑑𝑥 
 

∫ tan−1 𝑥 𝑑𝑥 = 𝑥 tan−1 𝑥 −  ∫
𝑥

1+𝑥2 𝑑𝑥 
 

To evaluate  ∫
𝑥

1+𝑥2 𝑑𝑥, notice that the numerator is almost the 

            derivative of the denominator (except for a factor of 2).  
 

Let     𝑢 = 1 + 𝑥2 

       𝑑𝑢 = 2𝑥 𝑑𝑥  

     
1

2
𝑑𝑢 = 𝑥 𝑑𝑥 

∫
𝑥

1+𝑥2 𝑑𝑥 = ∫
1

2
𝑑𝑢

𝑢
=

1

2
ln|𝑢|  +𝐶 =

1

2
ln|1 + 𝑥2| + 𝐶 

                      ∫ tan−1 𝑥 𝑑𝑥 = 𝑥 tan−1 𝑥 −
1

2
ln|1 + 𝑥2| + 𝐶.  
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Caution:  Even if we have an integral that looks like it might require integration by  
      parts, it may not. 
 

Ex.   Evaluate ∫ 𝑥 𝑒𝑥2
𝑑𝑥. 

 
 
 

 This is an integral where we are integrating the product of dissimilar 
 functions. However, integration by parts won't work.  Instead: 
 
 

Let      𝑢 = 𝑥2 

       𝑑𝑢 = 2𝑥 𝑑𝑥  

     
1

2
𝑑𝑢 = 𝑥 𝑑𝑥 

∫ 𝑥 𝑒𝑥2
𝑑𝑥 = ∫ 𝑒𝑢 (

1

2
) 𝑑𝑢  

 

        =
1

2
𝑒𝑢 + 𝐶 =

1

2
𝑒𝑥2

+ 𝐶.  
 

 It’s not a bad idea to ask yourself if there is a simple 𝑢-substitution that will 

 allow you to evaluate an integral before you try integrating by parts.   
 
 
Ex.  Evaluate the following integrals. 
 

a) ∫ 𝑥2 sin(𝑥3) 𝑑𝑥 
 

b) ∫ 𝑥2 sin 𝑥 𝑑𝑥 
 
 

a) Let   𝑢 = 𝑥3 

     𝑑𝑢 = 3𝑥2𝑑𝑥  

   
1

3
𝑑𝑢 = 𝑥2𝑑𝑥  

 

∫ 𝑥2 sin(𝑥3) 𝑑𝑥 = ∫ sin(𝑢) (
1

3
) 𝑑𝑥  

              = −
1

3
cos 𝑢 + 𝐶 = −

1

3
cos(𝑥3) + 𝐶.  
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b) Integrate by parts: 

      𝑢 = 𝑥2               𝑣 = − cos 𝑥 
      𝑑𝑢 = 2𝑥 𝑑𝑥      𝑑𝑣 = sin 𝑥  𝑑𝑥 

 

∫ 𝑥2 sin 𝑥 𝑑𝑥 = −𝑥2 cos 𝑥 − ∫ −(cos 𝑥)(2𝑥)𝑑𝑥  
 

       = −𝑥2 cos 𝑥 + 2 ∫ 𝑥 cos 𝑥 𝑑𝑥  
 

Integrate by parts again: 
 

𝑢 = 𝑥                𝑣 = sin 𝑥 
      𝑑𝑢 = 𝑑𝑥            𝑑𝑣 = cos 𝑥  𝑑𝑥 

 

∫ 𝑥 cos 𝑥 𝑑𝑥 = 𝑥 sin 𝑥 − ∫ sin 𝑥 𝑑𝑥  
 

             = 𝑥 sin 𝑥 + cos 𝑥 + 𝐶 
 

        ∫ 𝑥2 sin 𝑥 𝑑𝑥 = −𝑥2 cos 𝑥 + 2𝑥 sin 𝑥 + 2 cos 𝑥 + 𝐶.  
 
 

 
 
Sometimes it’s not obvious that integration by parts is giving us a simpler integral, 
yet we are still making progress toward an evaluation of the original integral. 
 

Ex.   Evaluate ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥.  
 
 
                  Integrate by parts: 

        𝑢 = 𝑒𝑥                𝑣 = sin 𝑥             
𝑑𝑢 = 𝑒𝑥  𝑑𝑥      𝑑𝑣 = cos 𝑥 𝑑𝑥 

 

∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥 − ∫ 𝑒𝑥 sin 𝑥 𝑑𝑥         (∗)  
 
 

In this case, ∫ 𝑒𝑥 sin 𝑥 𝑑𝑥 is no simpler than the original integral, 

 ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥. However, let’s integrate by parts again. 
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𝑢 = 𝑒𝑥                  𝑣 = −cos 𝑥 
𝑑𝑢 = 𝑒𝑥  𝑑𝑥        𝑑𝑣 = sin 𝑥 𝑑𝑥 

 

∫ 𝑒𝑥 sin 𝑥 𝑑𝑥 = −𝑒𝑥 cos 𝑥 − ∫ − 𝑒𝑥 cos 𝑥 𝑑𝑥  
 

                     = −𝑒𝑥 cos 𝑥 + ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥.  
 

Plugging in this new result into (∗) we get: 

 

        ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥 − (−𝑒𝑥 cos 𝑥 + ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥)  
 

 ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥 + 𝑒𝑥 cos 𝑥 − ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥.  
 

 Now add ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 to both sides of the equation: 
 

2 ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥 + 𝑒𝑥 cos 𝑥  
 

             ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 =
1

2
𝑒𝑥(sin 𝑥 + cos 𝑥) + 𝐶.  

 
 
 
 
 
Integration by parts can be used to evaluate definite integrals as well as indefinite 
integrals. The integration by parts formula for definite integrals is: 
 
 

∫ 𝒖 𝒅𝒗 
𝒙=𝒃

𝒙=𝒂

= 𝒖(𝒙)𝒗(𝒙)|
𝒙=𝒂

𝒙=𝒃

− ∫ 𝒗 𝒅𝒖 .
𝒙=𝒃

𝒙=𝒂
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Ex.  Evaluate ∫ ln 𝑥  𝑑𝑥 
𝑒

2
.  

 
 

       Integrate by parts:          𝑢 = ln 𝑥             𝑣 = 𝑥 

𝑑𝑢 =
1

𝑥
 𝑑𝑥        𝑑𝑣 = 𝑑𝑥  

 

∫ ln 𝑥  𝑑𝑥 
𝑒

2
= 𝑥 ln 𝑥|

𝑥=2

𝑥=𝑒
− ∫ 𝑥 (

1

𝑥
)  𝑑𝑥 

𝑥=𝑒

𝑥=2
  

 

                           = (𝑒 ln 𝑒 − 2 ln 2) − ∫ 1 𝑑𝑥 =
𝑒

2
(𝑒 − 2 ln 2) − 𝑥|

𝑥=2

𝑥=𝑒
  

 

           = (𝑒 − 2 ln 2) − (𝑒 − 2) 
 

 = 2 − 2 ln 2. 
 
 
 

Hyperbolic Functions 
 
Just as we can think of a point on the unit circle, 𝑥2 + 𝑦2 = 1, as given by 
(cos(𝑡) , sin(𝑡)), we can define a point on the right branch of the unit hyperbola, 

𝑥2 − 𝑦2 = 1;    𝑥 > 0, by (cosh(𝑡) , sinh(𝑡)), where cosh(𝑡) is called the 
hyperbolic cosine and sinh(𝑡) is called the hyperbolic sine.  As with trigonometric 
functions we can define the other four hyperbolic functions in terms of cosh(𝑡) 
and sinh(𝑡). We define these functions as follows: 
 

         sinh(𝑥) =  
𝑒𝑥−𝑒−𝑥

2
                        csch(𝑥) = 

1

sinh(𝑥)
     

 

         cosh(𝑥) =  
𝑒𝑥+𝑒−𝑥

2
                        sech(𝑥) = 

1

cosh(𝑥)
  

 
 

       tanh(𝑥) = 
sinh(𝑥)

cosh(𝑥)
                         coth(𝑥) = 

cosh(𝑥)

sinh(𝑥)
 . 

 
 



7 
 

Ex.   Find cosh(0) , sinh(0) , cosh(1), and sinh(1). 
 

       cosh(0) =
𝑒0+𝑒0

2
= 1               cosh(1) =

𝑒1+𝑒−1

2
=

1

2
(𝑒 +

1

𝑒
)          

       sinh(0) =
𝑒0−𝑒0

2
= 0               sinh(1) =

𝑒1−𝑒−1

2
=

1

2
(𝑒 −

1

𝑒
) .              

 
 
 
By a straight forward calculation one can check the following identities: 
   

           cosh2(𝑥) − sinh2(𝑥) = 1  
 

          
𝑑

𝑑𝑥
(sinh(𝑥)) = cosh(𝑥)                 ∫ cosh(𝑥) 𝑑𝑥 = sinh(𝑥) + 𝐶 

          
𝑑

𝑑𝑥
(cosh(𝑥)) = sinh(𝑥)                 ∫ sinh(𝑥) 𝑑𝑥 = cosh(𝑥) + 𝐶. 

 
             
 

Ex.   Evaluate ∫ 𝑡(𝑠𝑖𝑛ℎ(𝑡))𝑑𝑡
1

0
. 

 
 
             Let    𝑢 = 𝑡                𝑣 = cosh(𝑡)  
                   𝑑𝑢 = 𝑑𝑡           𝑑𝑣 = sinh(𝑡) 𝑑𝑡 
     
        

        ∫ 𝑡(𝑠𝑖𝑛ℎ(𝑡))𝑑𝑡
1

0
= 𝑡𝑐𝑜𝑠ℎ(𝑡)|𝑡=0

𝑡=1 − ∫ cosh(𝑡) 𝑑𝑡 
1

0
 

 

                                      = 1(cosh(1)) − 0(cosh(0)) − ∫ cosh(𝑡) 𝑑𝑡 
1

0
 

 

                                      = 1 (
1

2
(𝑒 +

1

𝑒
)) − 0 − 𝑠𝑖𝑛ℎ(𝑡)|𝑡=0

𝑡=1 
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                                      =
1

2
(𝑒 +

1

𝑒
) − (sinh(1) − sinh(0))    

                                         

                                      =
1

2
(𝑒 +

1

𝑒
) − (

1

2
(𝑒 −

1

𝑒
) − 0)  

 

                                      =
1

𝑒
 . 

 
 
 
Integration by parts can sometimes be used to find “reduction” formulas. 
 

 

Ex.  Show that ∫(ln 𝑥)𝑛𝑑𝑥 = 𝑥(ln 𝑥)𝑛 − 𝑛 ∫(ln 𝑥)𝑛−1𝑑𝑥. 
 
 
 

𝑢 = (ln 𝑥)𝑛                                          𝑣 = 𝑥 

  𝑑𝑢 = 𝑛(ln 𝑥)𝑛−1 (
1

𝑥
)   𝑑𝑥                 𝑑𝑣 = 𝑑𝑥  

 

            ∫(ln 𝑥)𝑛𝑑𝑥 = 𝑥 (ln 𝑥)𝑛 − ∫ 𝑛(ln 𝑥)𝑛−1 (
1

𝑥
) 𝑥 𝑑𝑥  

 

 ∫(ln 𝑥)𝑛𝑑𝑥 = 𝑥(ln 𝑥)𝑛 − 𝑛 ∫(ln 𝑥)𝑛−1𝑑𝑥.  
 
 
 
 

Ex.  Use the reduction formula in the previous example to find ∫(ln 𝑥)2𝑑𝑥.  
 
 
 Putting 𝑛 = 2 into the formula we get: 

 

∫(ln 𝑥)𝑛𝑑𝑥 = 𝑥(ln 𝑥)𝑛 − 𝑛 ∫(ln 𝑥)𝑛−1𝑑𝑥  
 
 

 ∫(ln 𝑥)2𝑑𝑥 = 𝑥(ln 𝑥)2 − 2 ∫(ln 𝑥)1𝑑𝑥.         (∗)  
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Now apply 𝑛 = 1 to the formula: 
 
 

        ∫(ln 𝑥)1𝑑𝑥 = 𝑥 ln 𝑥 − ∫(ln 𝑥)0𝑑𝑥  
 

= 𝑥 ln 𝑥 − ∫ 1𝑑𝑥  
 

= 𝑥 ln 𝑥 − 𝑥 + 𝐶.  
 

Substituting in (∗) we get: 
 

∫(ln 𝑥)2𝑑𝑥 = 𝑥 (ln 𝑥)2 − 2[𝑥 ln 𝑥 − 𝑥 + 𝐶]  
 

                     = 𝑥 (ln 𝑥)2 − 2𝑥 ln 𝑥 + 2𝑥 + 𝐶. 
 
 
 
 
 

Ex.  Make a substitution and then integrate by parts to evaluate  ∫ sin √𝑥 𝑑𝑥. 
 
 

                Start by making the substitution: 

                                                                𝑤 = √𝑥 = 𝑥
1

2  

 

     𝑑𝑤 =
1

2
𝑥−

1

2𝑑𝑥  

 

  𝑑𝑤 =
1

2√𝑥
𝑑𝑥  

 

 

2√𝑥 𝑑𝑤 = 𝑑𝑥   ⇒    2𝑤 𝑑𝑤 = 𝑑𝑥  
 
 

∫ sin √𝑥 𝑑𝑥 = ∫(sin(𝑤))(2𝑤) 𝑑𝑤 = 2 ∫ 𝑤 sin 𝑤 𝑑𝑤.  
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Now integrate by parts: 

𝑢 = 𝑤                      𝑣 = − cos 𝑤 
𝑑𝑢 = 𝑑𝑤                𝑑𝑣 = sin 𝑤 𝑑𝑤  

 
  ∫ 𝑤 sin 𝑤 𝑑𝑤 = −𝑤 cos 𝑤 — ∫ − cos 𝑤 𝑑𝑤  

  = −𝑤 cos 𝑤 + ∫ cos 𝑤 𝑑𝑤  
= −𝑤 cos 𝑤 + sin 𝑤 + 𝐶  

 

   ∫ sin √𝑥 𝑑𝑥 = 2(−𝑤 cos 𝑤 + sin 𝑤) + 𝐶  
 

  = −2√𝑥 cos √𝑥 + 2 sin √𝑥 + 𝐶. 
 
 


