Parametric Curves and Calculus

We know that when we have a curve given by $y = f(x)$, $\frac{dy}{dx}$ dx gives us the slope of the tangent line at any point. We can then use that fact to write an equation of the tangent line and find the sign of d^2y $\frac{d^{2}y}{dx^{2}}$ allowing us to determine the concavity of the curve at any point.

If we have a parametric curve given by $x = f(t)$, $y = g(t)$, then it's still true that the slope of the tangent line is given by $\frac{dy}{x}$ dx and the concavity is determined by the sign of d^2y $\frac{d^{2}y}{dx^{2}}$.

But how do we calculate $\frac{dy}{x}$ dx and d^2y $\frac{d^2y}{dx^2}$ for a parametric curve $x = f(t)$, $y = g(t)$?

To find $\frac{dy}{x}$ $\frac{dy}{dx}$, recall that the chain rule says:

$$
\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}
$$

Thus if dx $\frac{dx}{dt} \neq 0$, we have:

$$
\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}.
$$

Ex. Find an equation of the tangent line to $x = 2 \cos t$, $y = 4 \sin t$ when $t=\frac{\pi}{4}$ $\frac{\pi}{4}$.

$$
\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}
$$

$$
\frac{dy}{dt} = 4\cos t; \quad \frac{dx}{dt} = -2\sin t \quad \Rightarrow \quad \frac{dy}{dx} = \frac{4\cos t}{-2\sin t} = -2\cot t.
$$

at
$$
t = \frac{\pi}{4} \implies \cot \frac{\pi}{4} = \frac{\cos \frac{\pi}{4}}{\sin \frac{\pi}{4}} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1.
$$

So
$$
\frac{dy}{dx} = -2(1) = -2
$$
 at $t = \frac{\pi}{4}$.

The point on the curve at $t = \frac{\pi}{4}$ $\frac{n}{4}$:

$$
x = 2 \cos \frac{\pi}{4} = 2 \left(\frac{\sqrt{2}}{2}\right) = \sqrt{2}
$$

$$
y = 4 \sin \frac{\pi}{4} = 4 \left(\frac{\sqrt{2}}{2}\right) = 2\sqrt{2}.
$$

Equation of tangent line:

$$
(y - 2\sqrt{2}) = -2(x - \sqrt{2})
$$

$$
y - 2\sqrt{2} = -2x + 2\sqrt{2}
$$

$$
y = -2x + 4\sqrt{2}.
$$

To calculate $\frac{d^2y}{dx^2}$ $rac{a}{dx^2}$ notice:

$$
\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\left(\frac{dx}{dt}\right)}
$$

- Ex. Consider the curve given by the parametric equations $x = t^2 1$ and $y = t^3 - t$ and do the following:
	- a. Show the curve intersects itself at the point $(0, 0)$.
	- b. Find equations of the two tangent lines at $(0, 0)$.
	- c. Determine the points where the curve has a horizontal or vertical tangent line.
	- d. Find where the curve is concave up or concave down.

a. To show the curve intersects itself at $(0, 0)$ we must show that there are two different values of t , t_1 and t_2 , such that $x(t_1) = x(t_2) = 0$ and $y(t_1) = y(t_2) = 0.$

At (0,0)
$$
\Rightarrow
$$
 $x = t^2 - 1 = 0$, $y = t^3 - t = 0$
 $t = \pm 1$

$$
t = 1
$$
, $y = (1)^3 - 1 = 0$

$$
t = -1
$$
, $y = (-1)^3 - (-1) = -1 + 1 = 0$

So $t = 1$, $t = -1$ both correspond to the point $(0, 0)$.

b.
$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\left(\frac{dx}{dt}\right)}
$$
; $\frac{dy}{dt} = 3t^2 - 1$; $\frac{dx}{dt} = 2t$; $\frac{dy}{dx} = \frac{3t^2 - 1}{2t}$.

At
$$
t = -1
$$
, $x = 0$, $y = 0$, and $\frac{dy}{dx} = \frac{3(-1)^2 - 1}{2(-1)} = -\frac{2}{2} = -1$.

Equation of tangent line:

$$
y-0=-1(x-0)
$$

$$
y=-x
$$

At
$$
t = 1
$$
, $x = 0$, $y = 0$, and $\frac{dy}{dx} = \frac{3(1)^2 - 1}{2(1)} = \frac{2}{2} = 1$.

Equation of tangent line:

$$
y - 0 = 1(x - 0)
$$

$$
y = x
$$

c. Horizontal tangents occur when $\frac{dy}{y}$ $\frac{dy}{dx} = 0.$

$$
\frac{dy}{dx} = \frac{3t^2 - 1}{2t} = 0 \quad \Rightarrow \quad 3t^2 - 1 = 0
$$

$$
3t^2 = 1 \Rightarrow t^2 = 1/3
$$

$$
t = \pm 1/\sqrt{3}.
$$

Horizontal tangents at:

or

$$
t = 1/\sqrt{3} \Rightarrow (-2/3, -2/3\sqrt{3})
$$

$$
t = -1/\sqrt{3} \Rightarrow (-2/3, 2/3\sqrt{3})
$$

Vertical tangents when $\frac{dy}{y}$ dx becomes infinite. In this case, that's when $2t = 0$ or $t = 0 \Rightarrow (-1, 0)$.

d. To determine concavity we need to know the sign of d^2y $\frac{d^2y}{dx^2}$.

$$
\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt} \left(\frac{3t^2 - 1}{2t}\right)}{2t}
$$

$$
= \frac{\left(\frac{2t(6t) - (3t^2 - 1)(2)}{4t^2}\right)}{2t}
$$

$$
=\frac{6t^2+2}{8t^3}=\frac{3t^2+1}{4t^3}.
$$

Since $3t^2+1>0$ for all t and $t^3>0$ if $t>0$ and $t^3 < 0$ for $t < 0$ we have:

Areas

We know if we want to find the area underneath the curve $y = F(x)$, where $F(x) \ge 0$, between $x = a$ and $x = b$, then we evaluate:

$$
A = \int_a^b F(x) dx.
$$

Now if $x = f(t)$ and $y = g(t)$, then $dx = f'(t) dt$ so:

$$
A = \int_{\alpha}^{\beta} g(t) f'(t) dt
$$

where $t = \alpha$ corresponds to the leftmost endpoint and $t = \beta$ corresponds to the rightmost endpoint.

Ex. Find the area between the curve $x=t^2-1$, $y=t^3-t$; $-1\leq t\leq 0$ and the x -axis.

$$
t = -1 \qquad \Rightarrow \quad x = (-1)^2 - 1 = 0
$$
\n
$$
y = (-1)^3 - (-1) = 0
$$
\n
$$
t = 0 \qquad \Rightarrow \qquad x = (0)^2 - 1 = -1
$$
\n
$$
y = (0)^3 - (0) = 0
$$
\n
$$
t = 0
$$
\n
$$
t = 0
$$
\n
$$
t = 1
$$

$$
A = \int_{\alpha}^{\beta} g(t) f'(t) dt = \int_{t=0}^{t=-1} (t^3 - t) 2t dt = \int_{t=0}^{t=-1} 2t^4 - 2t^2 dt
$$

$$
= \left(\frac{2t^5}{5} - \frac{2t^3}{3}\right) \Big|_{t=0}^{t=-1} = \frac{2(-1)^5}{5} - \frac{2(-1)^3}{3}
$$

$$
= -\frac{2}{5} + \frac{2}{3} = \frac{4}{15}.
$$

- Ex. Find the area under the curve $x = 2cost$, $y = 4sint$; $0 \le t \le \pi$.
- At $t = 0$: $x = 2$, $y = 0$ $t = \pi$: $x = -2$, $y = 0$. $dx=\frac{dx}{dt}$ $\frac{dx}{dt}dt = (-2sint)dt$ Area $=\int_{t=\pi}^{t=0}4sint(-2sint)dt$ $=-8 \int_{t=\pi}^{t=0} (\sin^2 t) dt$ $=-8 \int_{t-\pi}^{t=0} \left(\frac{1}{2}\right)$ $\frac{1}{2} - \frac{1}{2}$ $\int_{t=\pi}^{t=0} \left(\frac{1}{2} - \frac{1}{2} cos 2t \right) dt$ $=-8(\frac{1}{2})$ $\frac{1}{2}t-\frac{1}{4}$ $\frac{1}{4}$ sin2t)| $t = \pi$ $t=0$ $=-8\left[(0-0)-\left(\frac{1}{2}\right) \right]$ $\frac{1}{2}\pi - 0$) = 4π .

Arc Length

When we developed the formula for the arc length of a curve such as $y = f(x)$, $a \le x \le b$, we approximated the curve with line segments and then used the mean value theorem to get the formula:

$$
L = \int_{x=a}^{x=b} \sqrt{1 + \left(f'(x)\right)^2} \, dx = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \, .
$$

A similar argument for parametric curves shows us:

$$
L = \int_{t=\alpha}^{t=\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.
$$

Here, $x = f(t)$, $y = g(t)$, $\alpha \le t \le \beta$, f' and g' are continuous on $[\alpha, \beta]$, and the curve is traversed exactly once as t increases from α to β . Ex. Find the length of $x = t^2 + 1$, $y = 2t^3 + 3$, $0 \le t \le 1$.

$$
\frac{dx}{dt} = 2t \qquad \Rightarrow \qquad \left(\frac{dx}{dt}\right)^2 = 4t^2
$$
\n
$$
\frac{dy}{dt} = 6t^2 \qquad \Rightarrow \qquad \left(\frac{dy}{dt}\right)^2 = 36t^4
$$

$$
L = \int_{t=0}^{t=1} \sqrt{4t^2 + 36t^4} dt
$$

$$
= \int_{t=0}^{t=1} \sqrt{4t^2(1+9t^2)} dt = \int_{t=0}^{t=1} 2t\sqrt{1+9t^2} dt
$$

Let
$$
u = 1 + 9t^2
$$
; $t = 0 \Rightarrow u = 1$
\n $du = 18t dt$; $t = 1 \Rightarrow u = 10$
\n $\frac{1}{18} du = dt$

$$
\int_{t=0}^{t=1} 2t\sqrt{1+9t^2} \, dt = \frac{2}{18} \int_{u=1}^{u=10} u^{\frac{1}{2}} \, du
$$

$$
= \frac{1}{9} \left(\frac{2}{3} u^{\frac{3}{2}}\right)\Big|_{u=1}^{u=10} = \frac{2}{27} \left(10^{\frac{3}{2}} - 1\right).
$$

Ex. Find the length of $x = \cos^2 t$, $y = \sin^2 t$, $0 \le t \le \frac{\pi}{2}$ $\frac{\pi}{2}$.

$$
\frac{dx}{dt} = 2\cos t (-\sin t) = -2\cos t (\sin t)
$$

$$
\frac{dy}{dt} = 2\sin t (\cos t)
$$

$$
L = \int_{t=0}^{t=\frac{\pi}{2}} \sqrt{4 \cos^2 t \left(\sin^2 t\right) + 4 \cos^2 t \left(\sin^2 t\right)} dt
$$

$$
\int_{t=\frac{\pi}{2}}^{t=\frac{\pi}{2}} \sqrt{4 \cos^2 t \left(\sin^2 t\right) + 4 \cos^2 t \left(\sin^2 t\right)} dt
$$

$$
= \int_{t=0}^{t=\frac{\pi}{2}} \sqrt{8 \cos^2 t \left(\sin^2 t\right)} dt = \int_{t=0}^{t=\frac{\pi}{2}} \sqrt{8} \cos t \sin t dt
$$

Let
$$
u = \sin t
$$
; $t = 0 \Rightarrow u = 0$, $t = \frac{\pi}{2} \Rightarrow u = 1$
du = cos t dt

$$
= \sqrt{8} \int_{u=0}^{u=1} u \, du = \sqrt{8} \left. \frac{u^2}{2} \right|_{u=0}^{u=1}
$$

$$
= \sqrt{8} \left(\frac{1}{2} \right) = (2\sqrt{2}) \left(\frac{1}{2} \right) = \sqrt{2} \, .
$$