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Parametric Curves and Calculus 
 
 

We know that when we have a curve given by 𝑦 = 𝑓(𝑥),  
𝑑𝑦

𝑑𝑥
  gives us the slope 

of the tangent line at any point. We can then use that fact to write an equation of 

the tangent line and find the sign of 
𝑑2𝑦

𝑑𝑥2 allowing us to determine the concavity 

of the curve at any point. 
 
 

If we have a parametric curve given by 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), then it’s still true 

that the slope of the tangent line is given by 
𝑑𝑦

𝑑𝑥
 and the concavity is determined 

by the sign of  
𝑑2𝑦

𝑑𝑥2. 

 
 

But how do we calculate 
𝑑𝑦

𝑑𝑥
 and 

𝑑2𝑦

𝑑𝑥2 for a parametric curve 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡)? 

 
 
 

To find  
𝑑𝑦

𝑑𝑥
 , recall that the chain rule says:  

 
𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡
 

 
 
 

Thus if  
𝑑𝑥

𝑑𝑡
≠ 0, we have: 

 

  
𝑑𝑦

𝑑𝑥
=

(
𝑑𝑦

𝑑𝑡
)

(
𝑑𝑥

𝑑𝑡
)

 . 
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Ex.     Find an equation of the tangent line to 𝑥 = 2 cos 𝑡 , 𝑦 = 4 sin 𝑡 when 

 𝑡 =
𝜋

4
 . 

𝑑𝑦

𝑑𝑥
=

(
𝑑𝑦

𝑑𝑡
)

(
𝑑𝑥

𝑑𝑡
)
  

 

           
𝑑𝑦

𝑑𝑡
= 4 cos 𝑡 ;    

𝑑𝑥

𝑑𝑡
= −2 sin 𝑡     ⟹     

𝑑𝑦

𝑑𝑥
=

4 cos 𝑡

−2 sin 𝑡
= −2 cot 𝑡.   

 
 

at 𝑡 =
𝜋

4
   ⇒            cot

𝜋

4
=

cos
𝜋

4

sin
𝜋

4

=
√2

2

√2

2

= 1.  

 

So  
𝑑𝑦

𝑑𝑥
= −2(1) = −2 at 𝑡 =

𝜋

4
.  

 
 

 The point on the curve at 𝑡 =
𝜋

4
: 

 

𝑥 = 2 cos
𝜋

4
= 2 (

√2

2
) = √2  

    𝑦 = 4 sin
𝜋

4
= 4 (

√2

2
) = 2√2 . 

 

 Equation of tangent line: 

 

                                      (𝑦 − 2√2) = −2(𝑥 − √2) 

𝑦 − 2√2 = −2𝑥 + 2√2   

            𝑦 = −2𝑥 + 4√2.  

 
 

To calculate 
𝑑2𝑦

𝑑𝑥2 notice:  
 

 

𝑑2𝑦

𝑑𝑥2
=

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) =

𝑑

𝑑𝑡
(

𝑑𝑦

𝑑𝑥
)

(
𝑑𝑥

𝑑𝑡
)
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Ex.  Consider the curve given by the parametric equations 𝑥 = 𝑡2 − 1 and  

𝑦 = 𝑡3 − 𝑡 and do the following:  
 

a. Show the curve intersects itself at the point (0, 0). 

b. Find equations of the two tangent lines at (0, 0). 

c. Determine the points where the curve has a horizontal or vertical tangent 

line. 

d. Find where the curve is concave up or concave down. 

 
 
 
 

a. To show the curve intersects itself at (0, 0) we must show that there are 

two different values of 𝑡, 𝑡1 and 𝑡2, such that 𝑥(𝑡1) = 𝑥(𝑡2) = 0 and 
𝑦(𝑡1) = 𝑦(𝑡2) = 0. 
 
 

At (0, 0)    ⇒      𝑥 = 𝑡2 − 1 = 0 ,     𝑦 = 𝑡3 − 𝑡 = 0 
        𝑡 = ±1 
 
 

 

𝑡 = 1 ,           𝑦 = (1)3 − 1 = 0  
  
 

𝑡 = −1 ,       𝑦 = (−1)3 − (−1) = −1 + 1 = 0  
 
 
 

So 𝑡 = 1,   𝑡 = −1 both correspond to the point (0, 0). 
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b. 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡

(
𝑑𝑥

𝑑𝑡
)

;       
𝑑𝑦

𝑑𝑡
= 3𝑡2 − 1;       

𝑑𝑥

𝑑𝑡
= 2𝑡;      

𝑑𝑦

𝑑𝑥
=

3𝑡2−1

2𝑡
 . 

 

At 𝑡 = −1,     𝑥 = 0,     𝑦 = 0,  and   
𝑑𝑦

𝑑𝑥
=

3(−1)2−1

2(−1)
= −

2

2
= −1. 

 
Equation of tangent line: 

    𝑦 − 0 = −1(𝑥 − 0) 

                                               𝑦 = −𝑥   
 
 

At 𝑡 = 1,    𝑥 = 0,    𝑦 = 0,   and   
𝑑𝑦

𝑑𝑥
=

3(1)2−1

2(1)
=

2

2
= 1. 

 
Equation of tangent line: 

𝑦 − 0 = 1(𝑥 − 0) 

                                               𝑦 = 𝑥   
 

 

c. Horizontal tangents occur when  
𝑑𝑦

𝑑𝑥
= 0.    

 

𝑑𝑦

𝑑𝑥
=

3𝑡2−1

2𝑡
 = 0    ⇒    3𝑡2 − 1 = 0  

                        or 
                                         3𝑡2 = 1   ⇒      𝑡2 = 1/3   

 

                                     𝑡 = ±1/√3.  

 

Horizontal tangents at:  

   𝑡 = 1/√3    ⇒     (−2/3, −2/3√3) 

                                   𝑡 = −1/√3   ⇒   (−2/3,   2/3√3) 
 
 

Vertical tangents when 
𝑑𝑦

𝑑𝑥
 becomes infinite. In this case, that’s when  

 

2𝑡 = 0 or  𝑡 = 0    ⇒ (−1, 0). 
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d. To determine concavity we need to know the sign of 
𝑑2𝑦

𝑑𝑥2 . 
 

𝑑2𝑦

𝑑𝑥2 =
𝑑

𝑑𝑡
(

𝑑𝑦

𝑑𝑥
)

𝑑𝑥

𝑑𝑡

=

𝑑

𝑑𝑡
(

3𝑡2−1

2𝑡
)

2𝑡
  

 

        =
(

2𝑡(6𝑡)−(3𝑡2−1)(2)

4𝑡2 )

 2𝑡
 

 

 

       =
6𝑡2+2

8𝑡3 =
3𝑡2+1

4𝑡3  . 

 
Since 3𝑡2 + 1 > 0 for all 𝑡 and 𝑡3 > 0 if 𝑡 > 0  
  and 𝑡3 < 0 for 𝑡 < 0 we have: 

 

              
𝑑2𝑦

𝑑𝑥2 > 0  if 𝑡 > 0       ⟹   the curve is concave up   

 

              
𝑑2𝑦

𝑑𝑥2 < 0  if 𝑡 < 0       ⟹   the curve is concave down. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

𝑦 = 𝑥 

𝑦 = −𝑥 

𝑥 = −1 

𝑦 = 2/3√3 

𝑦 = −2/3√3 
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     𝑡 = 0    ⇒       𝑥 = (0)2 − 1 = −1 
 

𝑦 = (0)3 − (0) = 0 

Areas 
 

We know if we want to find the area underneath the curve 𝑦 = 𝐹(𝑥), where 

𝐹(𝑥) ≥ 0, between 𝑥 = 𝑎 and 𝑥 = 𝑏, then we evaluate: 
 

𝐴 = ∫ 𝐹(𝑥)𝑑𝑥
𝑏

𝑎

 . 

 

Now if 𝑥 = 𝑓(𝑡) and 𝑦 = 𝑔(𝑡), then 𝑑𝑥 = 𝑓′(𝑡) 𝑑𝑡 so: 
 

𝐴 = ∫ 𝑔(𝑡) 𝑓′(𝑡) 𝑑𝑡
𝛽

𝛼

  

where 𝑡 = 𝛼 corresponds to the leftmost endpoint    
 and 𝑡 = 𝛽 corresponds to the rightmost endpoint. 
 
 

Ex.    Find the area between the curve 𝑥 = 𝑡2 − 1,   𝑦 = 𝑡3 − 𝑡;    −1 ≤ 𝑡 ≤ 0  
        and the 𝑥-axis. 
 
                                                 𝑡 = −1         ⟹    𝑥 = (−1)2 − 1 = 0  

 

                                                                                        𝑦 = (−1)3 − (−1) = 0 

 
 
 
 

 
 
 

 

−1                                                                                       0 

𝑡 = 0 𝑡 = −1 
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𝐴 = ∫ 𝑔(𝑡) 𝑓′(𝑡) 𝑑𝑡
𝛽

𝛼

= ∫ (𝑡3 − 𝑡) 2𝑡 𝑑𝑡
𝑡=−1

𝑡=0

= ∫ 2𝑡4 − 2𝑡2 𝑑𝑡
𝑡=−1

𝑡=0

 

 
 

                                      = (
2𝑡5

5
−

2𝑡3

3
)|

𝑡=0

𝑡=−1

=
2(−1)5

5
−

2(−1)3

3
 

 

                                          = −
2

5
+

2

3
=

4

15
 .  

 
 
Ex.  Find the area under the curve 𝑥 = 2𝑐𝑜𝑠𝑡, 𝑦 = 4𝑠𝑖𝑛𝑡;   0 ≤ 𝑡 ≤ 𝜋. 
 
 
At  𝑡 = 0:     𝑥 = 2,         𝑦 = 0 
     𝑡 = 𝜋:     𝑥 = −2,      𝑦 = 0. 
 

𝑑𝑥 =
𝑑𝑥

𝑑𝑡
𝑑𝑡 = (−2𝑠𝑖𝑛𝑡)𝑑𝑡  

 
 

Area= ∫ 4𝑠𝑖𝑛𝑡(−2𝑠𝑖𝑛𝑡)𝑑𝑡
𝑡=0

𝑡=𝜋
 

  

         = −8 ∫ (sin2 𝑡)𝑑𝑡
𝑡=0

𝑡=𝜋
 

 

         = −8 ∫ (
1

2
−

1

2
𝑐𝑜𝑠2𝑡) 𝑑𝑡

𝑡=0

𝑡=𝜋
 

 

          = −8(
1

2
𝑡 −

1

4
𝑠𝑖𝑛2𝑡)|

𝑡=𝜋

𝑡=0
 

 

          = −8 [(0 − 0) − (
1

2
𝜋 − 0)] = 4𝜋. 

 
 

       −2                                                      2 
      𝑡 = 𝜋                                               𝑡 = 0 

𝑥 = 2𝑐𝑜𝑠𝑡  
𝑦 = 4𝑠𝑖𝑛𝑡  
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Arc Length 
 
 
When we developed the formula for the arc length of a curve such as    

𝑦 = 𝑓(𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, we approximated the curve with line segments and 

then used the mean value theorem to get the formula: 

 
 

𝐿 = ∫ √1 + (𝑓′(𝑥))
2

𝑥=𝑏

𝑥=𝑎

𝑑𝑥 = ∫ √1 + (
𝑑𝑦

𝑑𝑥
)

2𝑏

𝑎

𝑑𝑥 . 

 
 
 
 
A similar argument for parametric curves shows us: 
 

𝐿 = ∫ √(
𝑑𝑥

𝑑𝑡
)

2

+ (
𝑑𝑦

𝑑𝑡
)

2𝑡=𝛽

𝑡=𝛼

 𝑑𝑡. 

 
 
Here, 𝑥 = 𝑓(𝑡),   𝑦 = 𝑔(𝑡),   𝛼 ≤ 𝑡 ≤ 𝛽, 𝑓′ and 𝑔′ are continuous on 

[𝛼, 𝛽], and the curve is traversed exactly once as 𝑡 increases from 𝛼 to 𝛽. 
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Ex.  Find the length of  𝑥 = 𝑡2 + 1 ,    𝑦 = 2𝑡3 + 3 ,     0 ≤ 𝑡 ≤ 1. 
 
 
 
 

𝑑𝑥

𝑑𝑡
= 2𝑡           ⇒        (

𝑑𝑥

𝑑𝑡
)

2

= 4𝑡2    
 

    
𝑑𝑦

𝑑𝑡
= 6𝑡2         ⇒         (

𝑑𝑦

𝑑𝑡
)

2

= 36𝑡4    

 
 

𝐿 = ∫ √4𝑡2 + 36𝑡4
𝑡=1

𝑡=0

𝑑𝑡 

 
 

     = ∫ √4𝑡2(1 + 9𝑡2)
𝑡=1

𝑡=0

𝑑𝑡 = ∫ 2𝑡√1 + 9𝑡2
𝑡=1

𝑡=0

𝑑𝑡 

 
 

Let       𝑢 = 1 + 9𝑡2;       𝑡 = 0 ⇒ 𝑢 = 1 
         𝑑𝑢 = 18𝑡 𝑑𝑡  ;       𝑡 = 1 ⇒ 𝑢 = 10 

     
1

18
𝑑𝑢 = 𝑑𝑡  

 
 

∫ 2𝑡√1 + 9𝑡2
𝑡=1

𝑡=0

𝑑𝑡 =
2

18
∫ 𝑢

1

2

𝑢=10

𝑢=1

𝑑𝑢 

 
 
 

                  =
1

9
(

2

3
𝑢

3

2)|
𝑢=1

𝑢=10

=
2

27
(10

3

2 − 1) . 
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Ex.  Find the length of   𝑥 = cos2 𝑡 ,   𝑦 = sin2 𝑡 ,     0 ≤ 𝑡 ≤
𝜋

2
 . 

 
 
 
 

  
𝑑𝑥

𝑑𝑡
= 2 cos 𝑡 (− sin 𝑡) = −2 cos 𝑡 (sin 𝑡)    

 

𝑑𝑦

𝑑𝑡
= 2 sin 𝑡 (cos 𝑡)     

 
 

𝐿 = ∫ √4 cos2 𝑡 (sin2 𝑡) + 4 cos2 𝑡 (sin2 𝑡)
𝑡=

𝜋

2

𝑡=0

𝑑𝑡 

 

= ∫ √8 cos2 𝑡 (sin2 𝑡)
𝑡=

𝜋

2

𝑡=0

𝑑𝑡 = ∫ √8 cos 𝑡 sin 𝑡
𝑡=

𝜋

2

𝑡=0

𝑑𝑡       

 
 

Let 𝑢 = sin 𝑡 ;             𝑡 = 0 ⇒ 𝑢 = 0 ,     𝑡 =
𝜋

2
⇒ 𝑢 = 1 

   𝑑𝑢 = cos 𝑡 𝑑𝑡  
 

 

     = √8 ∫ 𝑢 𝑑𝑢
𝑢=1

𝑢=0

= √8 
𝑢2

2
|

𝑢=0

𝑢=1

 

 

                                     = √8 (
1

2
) = (2√2) (

1

2
) = √2 . 


