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                             Representing Functions by Power Series 

 

We know from the formula for the sum of a geometric series that  

∑ 𝑥𝑛∞
𝑛=0 = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ =

1

1−𝑥
 ;      |𝑥| < 1. 

This is an example of a function,  𝑓(𝑥) =
1

1−𝑥
 , being represented by a power 

series.  We can use this relationship to represent other functions as power series. 

 

Ex.    Represent 𝑓(𝑥) =
1

1−𝑥2  as a power series. 

 

We know that  
1

1−𝑥
= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ so just substitute 𝑥2 for 𝑥. 

                      
1

1−𝑥2 =  1 + 𝑥2 + (𝑥2)2 + (𝑥2)3 + ⋯      

                                = 1 + 𝑥2 +  𝑥4 + 𝑥6 + ⋯ = ∑ 𝑥2𝑛∞
𝑛=0  

which converges as long as  |𝑥2| < 1 or |𝑥| < 1. 

 

 

Ex.   Represent 
1

1+𝑥2  as a power series.   

 

 
1

1+𝑥2 = 
1

1—(−𝑥2)
=  1 + (−𝑥2) + (−𝑥2)2 + (−𝑥2)3 + ⋯ 

  = 1 − 𝑥2 +  𝑥4 − 𝑥6 + ⋯ = ∑ (−1)𝑛𝑥2𝑛∞
𝑛=0 . 

which converges as long as |−𝑥2| < 1 or |𝑥| < 1. 
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Ex.   Represent 
5

3+𝑥2  as a power series. 

 

5

3+𝑥2 =
5

3(1+
𝑥2

3
)

= (
5

3
) (

1

1−(−
𝑥2

3
)
)  

                =
5

3
[1 + (−

𝑥2

3
) + (−

𝑥2

3
)

2

+ (−
𝑥2

3
)3 + (−

𝑥2

3
)4 + ⋯ ]   

        = (
5

3
) ∑ (−

𝑥2

3
)

𝑛
∞
𝑛=0                                                               

        = (
5

3
) ∑

(−1)𝑛𝑥2𝑛

3𝑛
∞
𝑛=0 = ∑

5(−1)𝑛𝑥2𝑛

3𝑛+1
∞
𝑛=0  . 

which converges for |−
𝑥2

3
| < 1 or |𝑥2| < 3 or |𝑥| < √3. 

 

 

Ex.    Represent 
𝑥4

𝑥3−8
 as a power series.  

 

𝑥4

𝑥3−8
= −

𝑥4

8−𝑥3 = −
𝑥4

8(1−(
𝑥3

8
))

= −
𝑥4

8
[

1

1−
𝑥3

8

]  

         = −
𝑥4

8
[1 +

𝑥3

8
+ (

𝑥3

8
)

2

+ (
𝑥3

8
)

3

+ ⋯ ]                                    

          = −
𝑥4

8
∑ (

𝑥3

8
)

𝑛
∞
𝑛=0     

         = −
𝑥4

8
∑

𝑥3𝑛

8𝑛
∞
𝑛=0 = − ∑

𝑥3𝑛+4

8𝑛+1
∞
𝑛=0  .                                         

This series converges as long as |
𝑥3

8
| < 1 or |𝑥|3 < 8 or |𝑥| < 2.  
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Differentiating and Integrating of Power Series 

Theorem:  If the power series ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  has a radius of    

         convergence, 𝑅 > 0, then the function: 

𝑓(𝑥) = 𝑐0 + 𝑐1(𝑥 − 𝑎) + 𝑐2(𝑥 − 𝑎)2 + 𝑐3(𝑥 − 𝑎)3 + ⋯ 

    = ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0   

is differentiable (and therefore continuous) on the interval: 

𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

and 

𝑓′(𝑥) = 𝑐1 + 2𝑐2(𝑥 − 𝑎) + 3𝑐3(𝑥 − 𝑎)
2

+ 4𝑐4(𝑥 − 𝑎)
3

+ ⋯ 

      = ∑ 𝑛𝑐𝑛(𝑥 − 𝑎)𝑛−1∞
𝑛=0 . 

 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐶 + 𝑐0(𝑥 − 𝑎) + 𝑐1
(𝑥 − 𝑎)2

2
+ 𝑐2

(𝑥 − 𝑎)3

3
+ ⋯ 

      = 𝐶 + ∑ 𝑐𝑛
(𝑥−𝑎)𝑛+1

𝑛+1
∞
𝑛=0  . 

 

The radius of convergence of 𝑓′(𝑥) and ∫ 𝑓(𝑥)𝑑𝑥 are both 𝑅. 
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Ex.   Find a power series for  
1

(1−𝑥)2 by differentiating the series for  
1

1−𝑥
 . 

 

 

 If   𝑓(𝑥) =
1

1−𝑥
 , then 𝑓′(𝑥) =

1

(1−𝑥)2 .        

 

𝑓(𝑥) =
1

1−𝑥
= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ = ∑ 𝑥𝑛∞

𝑛=0   

 

𝑓′(𝑥) =
1

(1−𝑥)2 = 1 + 2𝑥 + 3𝑥2 + ⋯ = ∑ (𝑛𝑥𝑛−1)∞
𝑛=1  . 

 

The radius of convergence of 𝑓′(𝑥) = ∑ (𝑛𝑥𝑛−1)∞
𝑛=1  is 1, the same as 

 the radius of convergence of 𝑓(𝑥) =
1

1−𝑥
= ∑ 𝑥𝑛∞

𝑛=0 . 
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Ex.   Find a power series for ln(1 − 𝑥) using the fact that: 

                     ∫
1

1−𝑥
𝑑𝑥 = − ln(1 − 𝑥) + 𝐶 for    |𝑥| < 1.  

 

      
1

1−𝑥
= 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + ⋯ = ∑ 𝑥𝑛;       ∞

𝑛=1 if   |𝑥| < 1. 

 

− ln(1 − 𝑥) + 𝐶 = ∫
1

1−𝑥
𝑑𝑥 = ∫(1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ )𝑑𝑥  

           = 𝑥 +
𝑥2

2
+

𝑥3

3
+

𝑥4

4
+ ⋯ = ∑

𝑥𝑛

𝑛
∞
𝑛=1  . 

 

Notice that at 𝑥 = 0,   ln(1 − 0) = 0, and  ∑
0𝑛

𝑛
∞
𝑛=1 = 0. 

So    – ln(1 − 0) + 𝐶 = ∑
0𝑛

𝑛
∞
𝑛=1 = 0   ⇒    𝐶 = 0. 

 

Thus, − ln(1 − 𝑥) = ∑
𝑥𝑛

𝑛
∞
𝑛=1           if |𝑥| < 1 . 

So           ln(1 − 𝑥) = − ∑
𝑥𝑛

𝑛
∞
𝑛=1       if |𝑥| < 1 . 

This has the same radius of convergence as ∑ 𝑥𝑛∞
𝑛=0 . 
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Ex.   Find a power series for tan−1 𝑥 using the fact that: 

∫
1

1+𝑥2 𝑑𝑥 = tan−1 𝑥 + 𝐶 . 

 

1

1+𝑥2 =
1

1−(−𝑥2)
= 1 − 𝑥2 + 𝑥4 − 𝑥6 + 𝑥8 + ⋯         

                                            = ∑ (−1)𝑛𝑥2𝑛∞
𝑛=0 .  

   

 This converges for |𝑥|2 < 1 or |𝑥| < 1 .   

 

tan−1 𝑥 + 𝐶 = ∫
1

1+𝑥2 𝑑𝑥 = ∫(1 − 𝑥2 + 𝑥4 − 𝑥6 + 𝑥8 + ⋯ ) 𝑑𝑥  

                        = 𝑥 −
𝑥3

3
+

𝑥5

5
−

𝑥7

7
+

𝑥9

9
+ ⋯ +

(−1)𝑛𝑥2𝑛+1

2𝑛+1
+ ⋯  

= ∑
(−1)𝑛𝑥2𝑛+1

2𝑛+1
∞
𝑛=0  . 

 

 This converges for |𝑥| < 1, just as ∑ (−1)𝑛𝑥2𝑛∞
𝑛=0  does. 

  Notice at 𝑥 = 0: 

 tan−1(0) + 𝐶 = ∑
(−1)𝑛(0)2𝑛+1

2𝑛+1
∞
𝑛=0 = 0   ⇒   𝐶 = 0      

                  So        tan−1 𝑥 = ∑
(−1)𝑛𝑥2𝑛+1

2𝑛+1
∞
𝑛=0  ;      if  |𝑥| < 1. 
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Ex.   Approximate ∫  
1

1+𝑥5 𝑑𝑥
0.2

0
 to 6 decimal places. 

 

1

1+𝑥5 =
1

1−(−𝑥5)
= 1 − 𝑥5 + 𝑥10 − 𝑥15 + ⋯ = ∑ (−1)𝑛𝑥5𝑛∞

𝑛=0      

 

         ∫  
1

1+𝑥5 𝑑𝑥
0.2

0
= ∫ (1 − 𝑥5 + 𝑥10 − 𝑥15 + ⋯ ) 𝑑𝑥

0.2

0
  

 = 𝑥 −
𝑥6

6
+

𝑥11

11
−

𝑥16

16
+ ⋯ + (−1)𝑛 𝑥5𝑛+1

5𝑛+1
+ ⋯ |

𝑥=0

𝑥=0.2

        

                  = 0.2 −
(0.2)6

6
+

(0.2)11

11
−

(0.2)16

16
+ ⋯ + (−1)𝑛 (0.2)5𝑛+1

5𝑛+1
+ ⋯    

 

This is an alternating series so the absolute value of the error between the 

            partial sum after 𝑛 terms and the entire sum is given by 𝑏𝑛+1. So we need 

            to check to see when  
(0.2)5𝑛+1

5𝑛+1
< 0.0000005.  

By trial and error we see that 
(0.2)11

11
< 0.0000005, so   

∫
1

1+𝑥5  𝑑𝑥
0.2

0
≈ 0.2 −

(0.2)6

6
≈ 0.199989 .    

 

 

 

 

 


