Representing Functions by Power Series

We know from the formula for the sum of a geometric series that

Zfl°=ox"=1+x+x2+x3+--~=ﬁ; x| < 1.

1
This is an example of a function, f(x) = T being represented by a power

series. We can use this relationship to represent other functions as power series.

1
1—x2

Ex. Represent f(x) = as a power series.

1
We know that T 1+x+x%+x3+ - so just substitute x? for x.

= 1+x%4+ (x?)%+ (x?)3 + -
=14+x*+ x*+x0 4 =20 12"

which converges as long as |x%| < 1or |x| < 1.

1
Ex. Represent > asapower series.
1+x

1 _ 1 _ 2 w232 _v2\3 4 ...
1+x2—1_(_x2)—1+( x°)+ (—x°)* + (—x°)> +

=1—-x%4+ x*—x%+ - =33 (—1)"x*".

which converges as long as |—x?| < 1or |x| < 1.
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Ex. Represent 3 as a power series.

e O
=20+ ()4 (-5) F DD

3
(5)20 (-5)
= §)zme S = e, S

|x2| < 3or|x| < /3.

n

which converges for

Ex. Represent — as a power series.
x —

x* x* x* _ 4[ 1 ]
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o x3
This series converges as long as |?| <1lor|x|® <8orl|x| < 2.



Differentiating and Integrating of Power Series

Theorem: If the power series Y.y Cn (X — @)™ has a radius of

convergence, R > 0, then the function:
fxX)=co+c(x—a)+cy(x—a)>+c3(x —a)d + -
= 3% (X — @)
is differentiable (and therefore continuous) on the interval:

a—R<x<a+R

and
f’(x) =cCc1+ 2C2(X — Cl) + 3C3(X — Cl)z + 4C4(x — a)3 + -

— Z;o:o ncn(x _ a)n—l.

X — a)? x—a)d
ff(x)dxzC+c0(x—a)+cl%+c2%
_ n+1
=C+Z§=ocn%-

The radius of convergence of ' (x) and [ f (x)dx are both R.



1
by differentiating the series for —.

1
(1—x)2 1-x

Ex. Find a power series for

1

If f(x) =ﬁ,thenf’(x) =m.

1 o
fO)=t==1+x+x*+x°+ =X ox"

, 1 0 _
f'(x) = Aot = 1+2x+3x%24+-=Y2 (nx™1),

=1} s 1, the same as

The radius of convergence of f'(x) = Yo (nx

1
the radius of convergence of f(x) = == Ym—o X™.



Ex. Find a power series for In(1 — x) using the fact that:

f—=dx=—In(1—x)+Cfor |x| <1,

1 o0 :
EZ1+x+x2+x3+x4+'“=2n=1xn) If |x|<1'

—ln(l—x)+C=f:1xdx

2 3 4

=x+x_+x_+x_+”
2 3 4

n

Notice thatatx = 0, In(1 — 0) = 0, and Z;‘lo:l%

OTl

So -In(1-0)+C=%¥p,—=0 = C=0.

n
Thus, —In(1 — x) = Z?{;l% if |[x] <1.
o X"
So In(1—-x) = —Zn=17 if [x] <1.

This has the same radius of convergence as Zflo:() x™.

JA+x+x*+x3+-

)dx
o X"
"= 2n=17-

= 0.



Ex. Find a power series for tan~ ! x using the fact that:

1
[—=dx=tan"'x +C.
1+x

1 _ 1 1 2 4 _ 6 8 4, ...
1+x2—1_(_x2)—1 X+ x*—x"+x"+

= 21010=0(_ 1)nx2n-

This converges for |x]|?> < lor|x| < 1.

tan‘1x+C=fl_:xzdx=f(1—x2+x4—x6+x8+---)dx
3 5 7 9 —-1n 2n+1
RV SIS S ST SRS k) L I
3 ' 5 7 09 2n+1

(_1)nx2n+1

= 2n=0"ni

This converges for |x| < 1, just as Yoo o(—1)™x%™ does.
Noticeatx = 0:

2n+1
(_1)nx2n+1

2n+1

=0 => C=0

tan~1(0) + € = ¥,

so tan"lx =Y, sf x| < 1.



0.2
Ex. Approximate fo z dx to 6 decimal places.

1+x
L ! =1—x° 10 _ n,..5n
1+x5  1-(-x5) I=x"+x Z 0( 1)
0.2 0.2
" mdx=J (- )
£6 511  xSn x=0.2
X—E+H——+ -+ (—1) 5_|_1_|_... .
— 0.2)° , (0.2)1 . (0.2)16 1 (0. 2)5n+1
=0.2 — c + Tl T + -4+ (-1) T 4+ ..

This is an alternating series so the absolute value of the error between the

partial sum after n terms and the entire sum is given by b, ;. So we need

( )5n+1
to check to see when ol < 0.0000005.

)11

< 0.0000005, so

By trial and error we see that

fo.z L gy~ 02— (0.2)6

X = U.
0 1+4x5 6

~ 0.199989.



