Power Series
A power series is a series of the form:
00 n _ 2 3 4
Yo CnX™ =g+ Cc1x + X + c3x° 4+ cux* + -

where X is a variable and the ¢,;s are real numbers. For each real number

X, we have an infinite series.

A power series may converge for certain values of x and not for others. We

can define a function, f(x), as
f(X) =co+cix+ cx? + c3x +cux* + o =20 cpx™

where the domain of the function is all values of X such that the series
converges.

Ex. Yo ox"=1+x+x2+x3+x*+--

This is just a geometric series with ¥ = x. We know this converges for
|x| < 1 and diverges for |x| = 1.

More generally, we can form a power series as:

Y ocn(x—a) " =cot o (x—a)+cy(x —a)? + c3(x —a)d + -

This is called a power series in (X — @) or a power series centered at “a” or a
power series about “a”.

The ratio test is one tool that we will use to try to establish where a power series
is convergent.
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Ex. For what values of X does Zn=1 - converge?

We start by applying the ratio test.
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In other words, we want to know what values of x will satisfy the inequality

n
above. Since lim —— = 1, it’s satisfied when |x| < 1.
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So we know the series converges for |x| < 1 and diverges for |x| > 1.

We have to check to see what happens to the series when |x| = 1.

When x = 1, the series becomes Zn 1 = Zn 1 , Which is just

n
the harmonic series, and we know this diverges.
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When x = —1, the series becomes 2%021 T' which is the alternating

harmonic series, and we know this converges by the alternating series test.

Thus, we know that the original series converges for —1 < x < 1.



Ex. For what values of x does Z,‘f:o(n!)x" converge? (0!'=1)

We start by applying the ratio test.

) (n+1)!x"+1|_ )
Al | = (Dl <1

But the only value of X where this inequality is true is for x = 0.

Thus Z;’;O(n!)x" converges only for x = 0.
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Ex. For what values of x does Z%;l converge?

Again, we start with the ratio test.

(.X—Z)n+1

| @y 3r (e 2)
e | T T o] A | <
3TL

So |x—2|<3
—3<x—-2<3
—-1<x<5.

So now we know the original series converges for —1 < x < 5.



But we still need to check the endpoints: x = —1 and x = 5.
When x = —1 the series becomes

(-1-2)" (=3)" (-)"3"
Zn 1 3N - Zn 1 3n Zn 1 3N

= Yo (=D"=-1+1-1+4+1—-1+ -, which diverges.

When X = 5 the series becomes
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=Yr-11=1+1+141+ -, which diverges.

So the original series converges for —1 < x < 5.

Theorem: For a given power series ), —o C, (X — @)™ there are only 3
possibilities:

1. The series converges only when X = a.
2. The series converges for all x.

3. Thereis a positive number, R, such that the series converges if
|x — a| < R and diverges for |x — a|] > R (one still has to check
the points where |x — a| =

R is called the radius of convergence.
In case 1 of this theorem, R = 0, in case 2 of the theorem, R = oo.

In the last example, R = 3, and the interval of convergence
was —1 < x < 5.



Ex. Find the radius of convergence, R, and the interval of convergence for
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Start with the ratio test.
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Sowe know R = 1 and:
—-1<x—-4<1 = 3<x<5.

We need to test the endpoints x = 3 and x = 5.

When x = 3, the series becomes
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which diverges because it's a p-series, withp = - < 1.
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When x = 5, the series becomes
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which converges by the alternating series test since
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So the interval of convergenceis 3 < x < 5.



Ex. Find the radius of convergence and the interval of convergence for
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Start with the ratio test.
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which we saw diverges because it's the harmonic series.
When x = — % , the series becomes
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which converges by the alternating series test.
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So the interval of convergence is — Py <x<-— .



Ex. Find the radius of convergence of Zoo nix”
X. Fi iu v - .
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Using the ratio test we get:
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Thus the radius of convergence is ©0 and the series converges for all values of x.



