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                           The Alternating Series, Ratio, and Root Tests 

 

The Alternating Series Test: 

     An Alternating Series is a series where the signs alternate in the sum. 

 

Ex.   ∑ (−1)𝑛−1 1

𝑛
∞
𝑛=1 = 1 −

1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ ⋯ + (−1)𝑛−1 1

𝑛
+ ⋯       

     This is called the “Alternating Harmonic Series”. 

 

Note:  Just because the sum has a  −1 raised to a power in front of the terms 

does NOT necessarily mean the series alternates.  For example: 

 

Ex.    ∑ (−1)2𝑛(
1

𝑛
)∞

𝑛=1 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ ⋯ +

1

𝑛
+ ⋯    

Ex.    ∑ (−1)2𝑛+1(
1

𝑛
)∞

𝑛=1 = −1 −
1

2
−

1

3
−

1

4
−

1

5
−

1

6
− ⋯ −

1

𝑛
− ⋯   

Ex.     ∑ (−1)𝑛−1(sin(𝑛))∞
𝑛=1 = sin(1) − sin(2) + sin(3) − sin(4) + ⋯ 

          This is because sin(1) > 0, sin(2) < 0, sin(3) < 0, sin(4) > 0, etc. 

 

You can also have an alternating series without a  −1 to some power in front of 

the terms. 

Ex.     ∑ [cos(𝑛 − 1) 𝜋] (
1

𝑛
)∞

𝑛=1     

= 1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ ⋯ + (−1)𝑛−1 1

𝑛
+ ⋯       
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Alternating Series Test Theorem:  If the alternating series  

 ∑ (−1)𝑛−1𝑏𝑛 =∞
𝑛=1 𝑏1 − 𝑏2 + 𝑏3 − 𝑏4 + ⋯ ;         𝑏𝑛 > 0, satisfies: 

1.      𝑏𝑛+1 ≤ 𝑏𝑛 for all 𝑛 (or at least from some 𝑛 onward) 

2.       lim
𝑛→∞

𝑏𝑛 = 0   

then the series converges. 

 

     Although in the vast majority of the cases we will look at (and possibly all of 

them), when lim
𝑛→∞

𝑏𝑛 = 0 it will also be true that 𝑏𝑛+1 ≤ 𝑏𝑛 for all 𝑛 (or at 

least from some 𝑛 onward).  However, it is possible to have lim
𝑛→∞

𝑏𝑛 = 0 and not 

have the sequence be decreasing.  In that case, we couldn’t apply the theorem. 

 

     So when you see an alternating series, you should think about the alternating 
series test. 

 

Ex.    Determine the convergence of the alternating harmonic series: 

         ∑ (−1)𝑛−1∞
𝑛=1

1

𝑛
= 1 −

1

2
+

1

3
−

1

4
+

1

5
−

1

6
+ ⋯ + (−1)𝑛−1 1

𝑛
+ ⋯ 

 

 

This series is alternating. 

𝑏𝑛 =
1

𝑛
;   lim

𝑛→∞
𝑏𝑛 = lim

𝑛→∞

1

𝑛
= 0 and 

𝑏𝑛+1 =
1

𝑛+1
≤

1

𝑛
= 𝑏𝑛 for all 𝑛. 

Hence, the alternating series test says this series converges. 
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Ex.   Test the convergence of the series  ∑
(−1)𝑛+1𝑛2

𝑛3+1
∞
𝑛=1  . 

 

 ∑ (−1)𝑛+1 𝑛2

𝑛3+1
∞
𝑛=1 =

1

2
−

4

9
+

9

28
+ ⋯ is an alternating series.  

 

 lim
𝑛→∞

𝑛2

𝑛3+1
= lim

𝑛→∞

𝑛2

𝑛2 (
1

𝑛+
1

𝑛2

) = 0.   

 𝑓(𝑥) =
𝑥2

𝑥3+1
  

𝑓′(𝑥) =
(𝑥3+1)(2𝑥)−𝑥2(3𝑥2)

(𝑥3+1)2 =
𝑥(2−𝑥3)

(𝑥3+1)2   

2 − 𝑥3 < 0 if   𝑥 > √2
3

 , so for 𝑥 > √2
3

 we know 
𝑥(2−𝑥3)

(𝑥3+1)2 < 0.  

Thus, 𝑓(𝑥) is decreasing for 𝑥 > √2
3

 and the sequence 
𝑛2

𝑛3+1
 is decreasing 

 for 𝑛 > √2
3

. 

So the alternating series theorem applies and ∑
(−1)𝑛+1𝑛2

𝑛3+1
∞
𝑛=1  converges. 

 

     We can actually determine how close the partial sums, 𝑆𝑛, of an alternating 
series are to the total sum without knowing what the total sum is. 

 

Alternating Series Estimation Theorem:  If 𝑆 = ∑ (−1)𝑛−1𝑏𝑛
∞
𝑛=1  is the sum of 

an alternating series that satisfies:  

1.      𝑏𝑛+1 ≤ 𝑏𝑛        

2.      lim
𝑛→∞

𝑏𝑛 = 0   

then |𝑆 − 𝑆𝑛| = |𝑅𝑛| ≤ 𝑏𝑛+1 . 
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Ex.      Show that ∑
(−2)𝑛

𝑛!
∞
𝑛=1  is convergent and determine how many terms of 

 the series are needed to find the sum to within  0.01 . 

 

First, let’s show that ∑
(−2)𝑛

𝑛!
∞
𝑛=1  is convergent with the alternating series 

 test. 

 ∑
(−2)𝑛

𝑛!
∞
𝑛=1 = ∑

(−1)𝑛2𝑛

𝑛!
∞
𝑛=1  is an alternating series. 

 Claim:   lim
𝑛→∞

2𝑛

𝑛!
= 0 .  

 

0 ≤
2𝑛

𝑛!
=

2

𝑛
(

2

𝑛−1
∙ … ∙

2

2
∙

2

1
) ≤

2

𝑛
(2) =

4

𝑛
                       

as every factor is  
2

𝑛−1
, … ,

2

2
≤ 1 .     

 

 Now, by the squeeze theorem since lim
𝑛→∞

4

𝑛
= 0  ⇒ lim

𝑛→∞

2𝑛

𝑛!
= 0 . 

 

By the same kind of argument, lim
𝑛→∞

𝑎𝑛

𝑛!
= 0 for any constant 𝑎. 

Claim: 𝑏𝑛+1 ≤ 𝑏𝑛 . 

 

𝑏𝑛+1 =
2𝑛+1

(𝑛+1)!
=

(2)(2𝑛
)

(𝑛+1)(𝑛!)
=

2

𝑛+1
(𝑏𝑛) ≤ 𝑏𝑛      

since for 𝑛 ≥ 1,   
2

𝑛+1
≤ 1 . 
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 Thus, we have 𝑏𝑛+1 ≤ 𝑏𝑛 for all 𝑛 ≥ 1 . 

 So by the alternating series test ∑
(−2)𝑛

𝑛!
∞
𝑛=1  converges.    

 

 The error in the series after 𝑛 terms is expressed as: 

|𝑆 − 𝑆𝑛| = |𝑅𝑛| ≤ 𝑏𝑛+1 =
2𝑛+1

(𝑛+1)!
≤ 0.01  

By trial and error we can find an 𝑛 such that 
2𝑛+1

(𝑛+1)!
≤ 0.01 . 

 

𝑛 
2𝑛+1

(𝑛 + 1)!
 

5 
26

6!
≈ 0.089  

6 
27

7!
≈ 0.025  

7  
28

8!
≈ 0.006  

 

 

We can see that 0.006 ≤ 0.01, so: 

𝑆 ≈ 𝑆7 = −2 + 
22

2!
−

23

3!
+

24

4!
−

25

5!
+

26

6!
−

27

7!
 

within an error of 0.01 . 

 

Note:  If the problem said find the number of terms that are needed to find the 
sum so that it’s accurate to the third decimal place, it would mean                

|𝑅𝑛| ≤ 0.0005.  Also, this method only works in general for alternating series. 

 



6 
 

Absolute Convergence 

 

For any series ∑ 𝑎𝑛
∞
𝑛=1 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + ⋯  , we can create a new 

series. 

 ∑ |𝑎𝑛
∞
𝑛=1 | = |𝑎1| + |𝑎2| + |𝑎3| + |𝑎4| + ⋯ 

   

Def.  A series ∑ 𝑎𝑛
∞
𝑛=1  is called Absolutely Convergent if the series of absolute   

         values ∑ |𝑎𝑛
∞
𝑛=1 | converges. 

 

Note:  If {𝑎𝑛} are already ≥ 0, absolute convergence means the same thing as 

 convergence. 

 

Ex.      ∑
(−1)𝑛−1

𝑛5
∞
𝑛=1 = 1 −

1

25 +
1

35 −
1

45 + ⋯    is absolutely convergent 

           because ∑
1

𝑛5 =∞
𝑛=1 1 +

1

25 +
1

35 +
1

45 + ⋯    is convergent since it’s a      

           𝑝-series with 𝑝 = 5 > 1. 

 

Ex.     ∑ (−1)𝑛−1 1

𝑛
∞
𝑛=1 = 1 −

1

2
+

1

3
−

1

4
+

1

5
− ⋯ + (−1)𝑛−1 1

𝑛
+ ⋯, 

 called the alternating harmonic series, is convergent (by the alternating 

 series test), but NOT absolutely convergent because: 

      ∑
1

𝑛
∞
𝑛=1 = 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ ⋯ +

1

𝑛
+ ⋯ ,  

             the harmonic series, is divergent. 
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Def.     If a series is convergent but not absolutely convergent, then it is called 
  Conditionally Convergent. 

 

Ex.      The alternating harmonic series,  ∑ (−1)𝑛−1 1

𝑛
∞
𝑛=1  , is conditionally  

  convergent. 

 

 

 

Theorem:  If a series is absolutely convergent then it is convergent. 

 

 

Ex.      Determine the convergence of   ∑
sin (2𝑛+1)

𝑛2
∞
𝑛=1  . 

 

 

 

Notice that |sin (2𝑛 + 1)| ≤ 1 so |
sin(2𝑛+1)

𝑛2 | ≤
1

𝑛2 .  

We know ∑
1

𝑛2
∞
𝑛=1  converges because it’s a 𝑝-series with 𝑝 = 2 > 1 .  

 

Thus, ∑ |
sin(2𝑛+1)

𝑛2 |∞
𝑛=1  converges by the comparison test.    

 

So ∑
sin (2𝑛+1)

𝑛2
∞
𝑛=1  is absolutely convergent (and hence also   

            convergent). 
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Ex.    Determine if the following series is convergent or divergent. If convergent, is 
 it absolutely convergent? 

∑
(−1)𝑛

ln(𝑛+1)
∞
𝑛=1 = −

1

𝑙𝑛2
+

1

𝑙𝑛3
−

1

𝑙𝑛4
+

1

𝑙𝑛5
− ⋯  

 

∑
(−1)𝑛

ln(𝑛+1)
∞
𝑛=1  is convergent by the alternating series test since: 

a) It’s an alternating series. 

b) lim
𝑛→∞

1

ln(𝑛)
= 0 since lim

𝑛→∞
ln 𝑛 = ∞. 

c) 𝑏𝑛+1 =
1

ln(𝑛+2)
≤

1

ln(𝑛+1)
= 𝑏𝑛 for all 𝑛 ≥ 1.    

 
 

This series is not absolutely convergent because ∑
1

ln(𝑛+1)
∞
𝑛=1  diverges 

            by the comparison test (hence it is conditionally convergent).  

 

ln(𝑛 + 1) ≤ 𝑛 + 1  ⇒   for 𝑛 ≥  1   ⇒   
1

ln(𝑛+1)
≥

1

𝑛+1
 but 

 ∑
1

𝑛+1
∞
𝑛=1  diverges by the integral test since: 

a) 𝑓(𝑥) =
1

𝑥+1
   ⇒   𝑓′(𝑥) = −

1

(𝑥+1)2 < 0 for 𝑥 ≥ 1, so {
1

𝑛+1
} is 

decreasing.  
 

b) ∫
1

𝑥+1

∞

1
𝑑𝑥 = lim

𝑛→∞
∫

1

𝑥+1

𝑏

1
𝑑𝑥     

                       = lim
𝑏→∞

(ln(𝑏 + 1) − ln(2)) = ∞ .   

 

So ∑
1

ln(𝑛+1)
∞
𝑛=1  diverges by the comparison test. 
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The Ratio Test 

 

     The Ratio Test can be very useful for determining absolute convergence. 

The Ratio Test Theorem: 

1.    If lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= 𝐿 < 1, then the series ∑ 𝑎𝑛

∞
𝑛=1  is absolutely convergent. 

2.   If lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= 𝐿 > 1, then the series ∑ 𝑎𝑛

∞
𝑛=1  is divergent. 

3.   If lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= 𝐿 = 1, then the ratio test is inconclusive (the series   

might converge or it might diverge.  We need to use some other method). 

 

Notice:   

If we apply the ratio test to ∑
1

𝑛2
∞
𝑛=1  ,  which we already know converges   

  (because it’s a 𝑝-series with 𝑝 = 2 > 1), we get: 

 lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

1

(𝑛+1)2

1

𝑛2

= lim
𝑛→∞

𝑛2

(𝑛+1)2 = 1, so the ratio test is   

 inconclusive. 

If we apply the ratio test to ∑
1

𝑛
∞
𝑛=1  , which we know diverges (why?) we get: 

lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

1

(𝑛+1)
1

𝑛

= lim
𝑛→∞

𝑛

𝑛+1
= 1, so the ratio test is again    

inconclusive. 
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The ratio test is often useful when 𝒂𝒏 has an 𝒏! term or (𝒇(𝒏))𝒏 term. 

 

Ex.    Test the convergence of ∑
2𝑛

𝑛!
∞
𝑛=1  . 

 

lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

2𝑛+1

(𝑛+1)!

2𝑛

𝑛!

= lim
𝑛→∞

(
2𝑛+1

(𝑛+1)!
) (

𝑛!

2𝑛)  

  = lim
𝑛→∞

2

𝑛+1
= 0 < 1 .    

   So we can say ∑
2𝑛

𝑛!
∞
𝑛=1  is absolutely convergent by the ratio test. 

 

 

Ex.   Test the convergence of   ∑
𝑛𝑛

𝑛!
∞
𝑛=1  . 

 

lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

(𝑛+1)𝑛+1

(𝑛+1)!

𝑛𝑛

𝑛!

= lim
𝑛→∞

(
(𝑛+1)𝑛+1

(𝑛+1)!
) (

𝑛!

𝑛𝑛)  

 

           = lim
𝑛→∞

(
(𝑛+1)(𝑛+1)𝑛

(𝑛+1)(𝑛)!
) (

𝑛!

𝑛𝑛) = lim
𝑛→∞

(𝑛+1)𝑛

𝑛𝑛   

 

             = lim
𝑛→∞

(
(𝑛+1)

𝑛
)

𝑛
= lim

𝑛→∞
(1 +

1

𝑛
)

𝑛
= 𝑒 > 1 . 

 

So the series diverges by the ratio test since 𝑎𝑛 ≥ 0 for all 𝑛. 
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Ex.     Determine the convergence of ∑
𝑛2(2𝑛+1)

3𝑛
∞
𝑛=1  . 

 

 

lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

(𝑛+1)22𝑛+2

3𝑛+1

𝑛22𝑛+1

3𝑛

= lim
𝑛→∞

(
(𝑛+1)22𝑛+2

3𝑛+1 ) (
3𝑛

𝑛22𝑛+1)  

                   = lim
𝑛→∞

(
2

3
) (

(𝑛+1)2

𝑛2 ) = lim
𝑛→∞

2

3
(

𝑛2+2𝑛+1

𝑛2 )  

                    = lim
𝑛→∞

(
2

3
) (

𝑛2

𝑛2) (
1+

2

𝑛
+

1

𝑛2

1
) =

2

3
< 1.              

 So the series is absolutely convergent by the ratio test. 

 

 

Rate of Growth from slowest to fastest: 

 

1.     ln(𝑛)          2.    𝑛𝑘;  𝑘 > 1          3.    𝑎𝑛 ;  𝑎 > 1          4.  𝑛!             5.  𝑛𝑛 

          ∑
𝑙𝑜𝑤𝑒𝑟 #

ℎ𝑖𝑔ℎ𝑒𝑟 #
∞
𝑛=1     converges,         ∑

ℎ𝑖𝑔ℎ𝑒𝑟 #

𝑙𝑜𝑤𝑒𝑟 #
∞
𝑛=1     diverges. 

 

Ex.     ∑
𝑛100

(1.01)𝑛
∞
𝑛=1    converges and   ∑

(1.01)𝑛

𝑛100
∞
𝑛=1   diverges   

 

        Convergence/divergence of both of these examples can be shown with the 
        Ratio Test. 
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The Root Test 

    The Root Test can be useful when 𝑛 is in the exponent of 𝑎𝑛, other than (−1)𝑛. 

 

The Root Test Theorem: 

1.    If lim
𝑛→∞

√|𝑎𝑛|
𝑛

= 𝐿 < 1, then the series ∑ 𝑎𝑛
∞
𝑛=1  is absolutely convergent 

(and therefore convergent).  

 

2.     If lim
𝑛→∞

√|𝑎𝑛|
𝑛

= 𝐿 > 1, then the series ∑ 𝑎𝑛
∞
𝑛=1  is divergent. 

 

3.     If lim
𝑛→∞

√|𝑎𝑛|
𝑛

= 𝐿 = 1, then the root test is inconclusive. 

 

 

 

Ex.   Test the convergence of ∑ (
2𝑛

5𝑛+3
)𝑛∞

𝑛=1  . 

 

 

lim
𝑛→∞

√(
2𝑛

5𝑛+3
)𝑛

𝑛
= lim

𝑛→∞
((

2𝑛

5𝑛+3
)

𝑛
)

1

𝑛
= lim

𝑛→∞
(

2𝑛

5𝑛+3
) = 

2

5
< 1 

 

 by L’Hospital’s Rule, so the series converges absolutely by the root test. 
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Ex.    Test the convergence of ∑ (
−3𝑛

2𝑛+1
)

3𝑛
∞
𝑛=1 . 

 

lim
𝑛→∞

√|
(−3𝑛)

2𝑛+1
|

3𝑛𝑛

= lim
𝑛→∞

√(
3𝑛

2𝑛+1
)

3𝑛𝑛

=  lim
𝑛→∞

((
3𝑛

2𝑛+1
)

3𝑛
)

1

𝑛

  

 

     = (
3

2
)

3
=

27

8
> 1.     

 

So the series is divergent by the root test 

Note: This series is also divergent by the divergence test. 

 

 

Ex.     Test the convergence of 
1

(ln 3)3 +
1

(ln 4)4 +
1

(ln 5)5 +
1

(ln 6)6 + ⋯  

 

 

 

lim
𝑛→∞

√
1

(ln 𝑛)𝑛

𝑛
= lim

𝑛→∞
(

1

(ln 𝑛)𝑛)

1

𝑛
= lim

𝑛→∞

1

ln 𝑛
= 0 . 

 

So the series is absolutely convergent by the root test. 
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                  Summary of Convergence/Divergence Tests for Series 

                                                Conditions                  Conditions 

Test              Series            on Convergence        on Divergence          Comments 

Divergence      ∑ 𝑎𝑛
∞
𝑛=1                                                    lim

𝑛→∞
𝑎𝑛 ≠ 0       Test can only prove  

Test                                                                                                                                 divergence____                 

Geometric      ∑ 𝑎𝑟𝑛−1∞
𝑛=1             |𝑟| < 1                           |𝑟| ≥ 1                    𝑆 =

𝑎

1−𝑟
 

Series______________________________________________________________                                                                                                                                                                                                                                                                                         

p-series             ∑
1

𝑛𝑝
∞
𝑛=1                    𝑝 > 1                             𝑝 ≤ 1                         𝑝 = 1  

                                                                                                                  is Harmonic Series                                                         

Alternating    ∑ (−1)𝑛∞
𝑛=1 𝑎𝑛       0< 𝑎𝑛+1 ≤ 𝑎𝑛                      𝑅𝑛, error after 𝑛-terms 

Series Test                                     lim
𝑛→∞

𝑎𝑛 = 0                                           |𝑅𝑛|≤ 𝑎𝑛+1__             

Integral          ∑ 𝑎𝑛
∞
𝑛=1             ∫ 𝑓(𝑥)𝑑𝑥 𝑐𝑜𝑛𝑣.

∞

1
      ∫ 𝑓(𝑥)𝑑𝑥 𝑑𝑖𝑣.

∞

1
    Must be able    

 Test       𝑓(𝑛) = 𝑎𝑛, 𝑓 > 0                                                                          to calculate                                                                  

                    is Decreasing/Cont.                                                                                    ∫ 𝑓(𝑥)𝑑𝑥__
∞

1
             

Ratio Test        ∑ 𝑎𝑛
∞
𝑛=1              lim

𝑛→∞
|

𝑎𝑛+1

𝑎𝑛
| < 1          lim

𝑛→∞
|

𝑎𝑛+1

𝑎𝑛
| > 1       Limit=1 is  

                                                                                                                          Inconclusive.  

                                                                                                                           Useful: 𝑎𝑛 has 𝑛! term, 

                                                                                                                                    𝑛 in an exponent                                                                                            

Root Test        ∑ 𝑎𝑛
∞
𝑛=1             lim

𝑛→∞
√|𝑎𝑛|
𝑛

< 1          lim
𝑛→∞

√|𝑎𝑛
𝑛

| > 1      Limit=1 is  

                                                                                                                           Inconclusive.                         

                                                                                              Useful: 𝑎𝑛has an 𝑛 in exponent 
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                                                     Conditions                  Conditions 

Test              Series         on Convergence        on Divergence          Comments 

Comparison  ∑ 𝑎𝑛
∞
𝑛=1      0 ≤ 𝑎𝑛 ≤ 𝑏𝑛            0 ≤ 𝑏𝑛 ≤ 𝑎𝑛            Useful when  

Test                               ∑ 𝑏𝑛
∞
𝑛=1  converges    ∑ 𝑏𝑛

∞
𝑛=1  𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠    ∑ 𝑎𝑛

∞
𝑛=1  is similar 

                                                                                                                   𝑝-series or  

                                                                                                                 Geometric series 

                                                                                                                                                                                                                                                                             

Limit Comp.   ∑ 𝑎𝑛
∞
𝑛=1     lim

𝑛→∞

𝑎𝑛

𝑏𝑛
= 𝐿 > 0     lim

𝑛→∞

𝑎𝑛

𝑏𝑛
= 𝐿 > 0   Useful when ∑ 𝑎𝑛

∞
𝑛=1   

Test                𝑎𝑛 ≥ 0     ∑ 𝑏𝑛
∞
𝑛=1  converges   ∑ 𝑏𝑛

∞
𝑛=1  diverges   similar to 𝑝-series 

                                           0 ≤ 𝑏𝑛                           0 ≤ 𝑏𝑛                 or Geometric series   

 

 

 

 

Ex.  In each case state which method you would use to determine if the series 

converges absolutely, conditionally, or diverges. 

a.       ∑
(−1)𝑘(5𝑘)

3𝑘2−1
∞
𝑘=1  .                                           

 

Alternating series test for convergence and comparison test with ∑
5

3𝑘
∞
𝑘=1  to 

show it’s not absolutely convergent. 
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b.       ∑
(−1)𝑗(sin(𝑗))

𝑗2
∞
𝑗=1  . 

 

Comparison test with ∑
1

𝑗2
∞
𝑗=1   to show absolute convergence (and thus 

convergence) 

 

 

c.      ∑ cos (
1

𝑛!
)∞

𝑛=1  . 

 

Divergence test since lim
𝑛→∞

cos (
1

𝑛!
) = 1 ≠ 0 . 

 

 

 

d.     ∑
(−1)𝑗

𝑗√ln (𝑗)

∞
𝑗=2  . 

 

 Alternating series test for convergence and integral test to show it’s not    

            absolutely convergent. 
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e.     ∑
5(−3)𝑛

22𝑛
∞
𝑛=1  . 

 

 Ratio test to show the series is absolutely convergent. 

 

 

 

f.     ∑
(−1)𝑛(2𝑛+1)

2𝑛+1
∞
𝑛=1  . 

 

 The series diverges by the divergence test since lim
𝑛→∞

(−1)𝑛(2𝑛+1)

2𝑛+1  does                

          not exist and hence is not equal to 0. 

          


