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                                    The Integral and Comparison Tests 

 

The Integral Test: 

     Let’s examine the series:   ∑
1

𝑛2
∞
𝑛=1 =

1

12 +
1

22 +
1

32 +
1

42 + ⋯ 

 

 

 

 

 

 

 

If we exclude the first rectangle, notice: 

∑
1

𝑛2

∞

𝑛=2

≤ ∫
1

𝑥2

∞

1

𝑑𝑥 = lim
𝑏→∞

∫ 𝑥−2
𝑏

1

𝑑𝑥 = lim
𝑏→∞

− (𝑏−1 − 1−1) 

                                                         = lim
𝑏→∞

− (
1

𝑏
− 1) = 1.    

Since the first term of the original series is 1 we have: 

∑
1

𝑛2

∞

𝑛=1

≤ 1 + 1 = 2 

So ∑
1

𝑛2
∞
𝑛=1  converges because the partial sums {𝑆𝑛} are bounded and 

 increasing. 

𝑓(𝑥) = 1/𝑥2 

1
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Now let’s look at ∑
1

𝑛
∞
𝑛=1  . 

 

 

 

 

 

 

 

 

 

 

 

Notice that: 

∫
1

𝑥

∞

1
𝑑𝑥 ≤ ∑

1

𝑛
∞
𝑛=1   

 

But we have: 

 

∫
1

𝑥

∞

1

𝑑𝑥 = lim
𝑏→∞

∫
1

𝑥

𝑏

1

𝑑𝑥 = lim
𝑏→∞

(ln(𝑏) − ln(1)) = ∞ 

 

So  ∑
1

𝑛
∞
𝑛=1  diverges. 

 

 

 

 

1

1
= 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 
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Integral Test Theorem:  Suppose 𝑓 is a continuous, positive, decreasing function 

 on [1, ∞) and let 𝑎𝑛 = 𝑓(𝑛).  Then ∑ 𝑎𝑛
∞
𝑛=1  is convergent, if and only if, 

 ∫ 𝑓(𝑥)𝑑𝑥
∞

1
 is convergent.  That means: 

a.     If ∫ 𝑓(𝑥)𝑑𝑥
∞

1
 converges (i.e., is finite), then ∑ 𝑎𝑛

∞
𝑛=1  converges. 

b.    If ∫ 𝑓(𝑥)𝑑𝑥
∞

1
 diverges (i.e., is infinite), then ∑ 𝑎𝑛

∞
𝑛=1  diverges. 

 

Notes:  

1.   You need to be able to determine if the resulting integral converges. 

2.   Be aware that to use the integral test we DO NOT need to start at 𝑛 = 1. 

For example, to test ∑
1

(𝑛−3)2
∞
𝑛=4   we use ∫

1

(𝑥−3)2

∞

4
𝑑𝑥. 

3.   It’s not necessary that 𝑓(𝑥) is always decreasing.  It just needs to be    
      decreasing from some point onward. 

 

Ex.    Determine the convergence of ∑
1

(𝑛−4)2
∞
𝑛=5  .   

         𝑓(𝑥) =
1

(𝑥−4)2 is a decreasing function for 𝑥 ≥ 5  (𝑓′(𝑥) < 0) and 

     ∫
1

(𝑥 − 4)2

∞

5

𝑑𝑥 = lim
𝑏→∞

∫
1

(𝑥 − 4)2

𝑏

5

𝑑𝑥 = lim
𝑏→∞

∫ (𝑥 − 4)−2
𝑏

5

𝑑𝑥 

                                        = lim
𝑏→∞

−(𝑥 − 4)−1|5
𝑏 

                                              = lim
𝑏→∞

−[(𝑏 − 4)−1 − (5 − 4)−1] 

                                              = lim
𝑏→∞

−(
1

𝑏−4
) + 1 = 1.    

Thus the series ∑
1

(𝑛−4)2
∞
𝑛=5  converges. 
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Ex. For what values of 𝑝 does the series ∑
1

𝑛𝑝
∞
𝑛=1   converge?   

      This is called a 𝒑-series (This is an important example). 

 

 

If 𝑝 < 0 , lim
𝑛→∞

1

𝑛𝑝 = ∞   and if   𝑝 = 0 , lim
𝑛→∞

1

𝑛0 = 1.  

In both cases, lim
𝑛→∞

𝑎𝑛 ≠ 0 so ∑
1

𝑛𝑝
∞
𝑛=1 ,   𝑝 ≤ 0 diverges by the 

 divergence test. 

 

When we discussed improper integrals we found ∫
1

𝑥𝑝

∞

1
𝑑𝑥 converged if 

 𝑝 > 1 and diverged if 𝑝 ≤ 1.   

If 𝑝 > 0, then 𝑓(𝑥) =
1

𝑥𝑝 is continuous, positive, and decreasing on 

          [1, ∞).   

          So by the integral test, ∑
1

𝑛𝑝
∞
𝑛=1  converges for 𝑝 > 1 and diverges  for   

         0 < 𝑝 ≤ 1. 

 

         So ∑
1

𝑛𝑝
∞
𝑛=1  converges for 𝑝 > 1 and diverges for   𝑝 ≤ 1 . 

 

 

 

 

 

 



5 
 

Ex.   Determine the convergence of the following series: 

a.      ∑
1

𝑛4
∞
𝑛=1  

b.     ∑
1

√𝑛
3

∞
𝑛=1  

 

a.   ∑
1

𝑛4
∞
𝑛=1  is a 𝑝-series with 𝑝 = 4 > 1 ⇒  the series converges. 

 

b.   ∑
1

√𝑛
3

∞
𝑛=1  is a 𝑝-series with 𝑝 =

1

3
≤ 1 ⇒  the series diverges. 

 

 

Ex.    Determine the convergence of  ∑
1

𝑛(ln(𝑛))2
∞
𝑛=2  .  

 

 𝑓(𝑥) = 
1

𝑥(ln 𝑥)2  is positive and continuous for 𝑥 > 2.  

It is also decreasing because 𝑥 and ln 𝑥 are increasing functions (or you 

 can show 𝑓′(𝑥) < 0 for 𝑥 > 2). 

Thus, we can apply the integral test: 

 

∫
1

𝑥(ln 𝑥)2

∞

2

𝑑𝑥 = lim
𝑏→∞

∫
1

𝑥(ln 𝑥)2

𝑏

2

𝑑𝑥 

 

Let 𝑢 = ln 𝑥 ;     𝑥 = 2  ⇒   𝑢 = ln 2 

   𝑑𝑢 =
1

𝑥
𝑑𝑥;     𝑥 = 𝑏  ⇒   𝑢 = ln 𝑏.  
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Now substitute: 

= lim
𝑏→∞

∫
1

𝑢2

𝑢=ln 𝑏

𝑢=ln 2

𝑑𝑢 = lim
𝑏→∞

−
1

𝑢
|

𝑢=ln 2

𝑢=ln 𝑏

 

= lim
𝑏→∞

− [
1

ln 𝑏
−

1

ln 2
] =

1

ln 2
 

 

So the series ∑
1

𝑛(ln 𝑛)2
∞
𝑛=2  converges by the integral test. 

 

Ex.  Determine the convergence of 𝑒−1 + 2𝑒−2 + 3𝑒−3 + ⋯ + 𝑛𝑒−𝑛 + ⋯ 

 

       ∑ 𝑛𝑒−𝑛 = 𝑒−1 + 2𝑒−2 + 3𝑒−3 + ⋯ + 𝑛𝑒−𝑛 + ⋯∞
𝑛=1  

       Let 𝑓(𝑥) = 𝑥𝑒−𝑥 > 0. 

       Notice for 𝑥 > 1,  𝑓(𝑥) is continuous and: 

               𝑓′(𝑥) = −𝑥𝑒−𝑥 + 𝑒−𝑥 = (1 − 𝑥)𝑒−𝑥 < 0. 

       Thus 𝑓(𝑥) = 𝑥𝑒−𝑥 is a decreasing function for 𝑥 > 1. 

       So we can apply the integral test to ∑ 𝑛𝑒−𝑛∞
𝑛=1 . 

 

       ∫ 𝑥𝑒−𝑥𝑑𝑥 = lim
𝑏→∞

∫ 𝑥𝑒−𝑥𝑑𝑥
𝑏

1

∞

1
                 (integrate by parts) 

                                     𝑢 = 𝑥             𝑣 = −𝑒−𝑥 

                               𝑑𝑢 = 𝑑𝑥        𝑑𝑣 = 𝑒−𝑥𝑑𝑥        
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                                     = lim
𝑏→∞

[(−𝑥𝑒−𝑥)|1
𝑏 + ∫ 𝑒−𝑥𝑑𝑥

𝑏

1
]    

                                     = lim
𝑏→∞

[(−
𝑏

𝑒𝑏 + 𝑒−1) − (𝑒−𝑥)|1
𝑏]    

       

                                 = lim
𝑏→∞

[(−
𝑏

𝑒𝑏 + 𝑒−1) − (𝑒−𝑏 − 𝑒−1)]. 

 

          lim
𝑏→∞

(−
𝑏

𝑒𝑏) = 0,     by L’Hospital’s Rule,  so 

       

                ∫ 𝑥𝑒−𝑥𝑑𝑥 =
∞

1
2𝑒−1. 

 

             Thus ∑ 𝑛𝑒−𝑛 = 𝑒−1 + 2𝑒−2 + 3𝑒−3 + ⋯ + 𝑛𝑒−𝑛 + ⋯∞
𝑛=1      

             converges by the integral test. 

 

 

The Comparison Test 

 

     Sometimes we can show a positive series converges by showing that its partial 
sums are always less than another positive series we know converges. 

Ex.    ∑
1

2+3𝑛
∞
𝑛=1 ≤ ∑

1

3𝑛
∞
𝑛=1    which converges since it’s a geometric series 

         with 𝑟 =
1
3

 ).   

 

     Or sometimes we can show a positive series diverges by showing that its partial 
sums are always greater than another positive series we know diverges. 
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Ex.     ∑
1

𝑛−1
≥∞

𝑛=2 ∑
1

𝑛
∞
𝑛=2  ,  which diverges because it’s the harmonic series. 

 

Comparison Test Theorem:  Suppose ∑ 𝑎𝑛
∞
𝑛=1  and ∑ 𝑏𝑛

∞
𝑛=1  are series with 

positive terms 

a.   If ∑ 𝑏𝑛
∞
𝑛=1  converges and 𝑎𝑛 ≤ 𝑏𝑛for all 𝑛 (or at least from some 𝑛 

       onward), then ∑ 𝑎𝑛
∞
𝑛=1  converges. 

b.   If ∑ 𝑏𝑛
∞
𝑛=1  diverges and 𝑎𝑛 ≥ 𝑏𝑛 for all 𝑛 (or at least from some 𝑛 

       onward), then ∑ 𝑎𝑛
∞
𝑛=1  diverges. 

 

1.   To use the comparison test we must have a set of series we know converge or   
diverge to use in the test.  Frequently the convergent series are geometric series 

with |𝑟| < 1 or 𝑝-series with 𝑝 > 1.  The divergent series are frequently 

geometric series with |𝑟| ≥ 1 or 𝑝-series with 𝑝 ≤ 1. 

2.   Remember, you can only prove a series is convergent by comparing it to a 
convergent series with terms that are BIGGER than your series.  You can only 
prove a series is divergent by comparing it to a divergent series with terms that 
are SMALLER than your series. 

 

Ex.     Determine the convergence of ∑
1

3𝑛2+2𝑛+5
∞
𝑛=1  . 

 

Notice that 
1

3𝑛2+2𝑛+5
≤

1

3𝑛2 . 

∑
1

3𝑛2
∞
𝑛=1 =

1

3
∑

1

𝑛2
∞
𝑛=1  converges because ∑

1

𝑛2
∞
𝑛=1  is a 𝑝-series 

  with 𝑝 > 1.  

Thus, ∑
1

3𝑛2+2𝑛+5
∞
𝑛=1 ≤ ∑

1

3𝑛2
∞
𝑛=1 < ∞ converges by the 

           comparison test. 
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Note:   If we had ∑
1

𝑛2−1
  ∞

𝑛=2 ,  we could NOT use the comparison test with 

 ∑
1

𝑛2
∞
𝑛=2  , which converges, because 

1

𝑛2 <
1

𝑛2−1
  (i.e., the inequality   

           goes the wrong way).  We will see that the Limit Comparison Test will allow   
           us to solve this problem. 

 

Ex.   Determine the convergence of ∑
2+sin 𝑛

𝑛
∞
𝑛=1  . 

 

 

Notice that 2 + sin 𝑛 ≥ 1 so  
2+sin 𝑛

𝑛
≥

1

𝑛
 . 

∑
1

𝑛
∞
𝑛=1  diverges because it’s the harmonic series.  

 ∑
1

𝑛
∞
𝑛=1 ≤ ∑

2+sin 𝑛

𝑛
∞
𝑛=1  so ∑

2+sin 𝑛

𝑛
∞
𝑛=1  diverges by the comparison   

           test. 

 

 

 

Ex.   Determine the convergence of ∑
sin2 𝑛

𝑛1.01+1
∞
𝑛=1  .     

 

0 ≤ sin2 𝑛 ≤ 1 and 
sin2 𝑛

𝑛1.01+1
≤

1

𝑛1.01 . 

∑
1

𝑛1.01
∞
𝑛=1  converges because it’s a 𝑝-series with 𝑝 > 1. 

 Thus, by the comparison test ∑
sin2 𝑛

𝑛1.01+1
∞
𝑛=1 ≤ ∑

1

𝑛1.01
∞
𝑛=1  converges. 
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Ex.   Determine the convergence of  ∑
1

(ln 𝑛)(5𝑛)
∞
𝑛=3  . 

 

1

ln 𝑛
≤ 1 if 𝑛 ≥ 3, so 

1

(ln 𝑛)(5𝑛)
≤

1

5𝑛 for 𝑛 ≥ 3. 

∑
1

5𝑛
∞
𝑛=3  converges because it’s a geometric series with −1 < 𝑟 =

1

5
< 1. 

Thus, ∑
1

(ln 𝑛)(5𝑛)
∞
𝑛=3 ≤ ∑

1

5𝑛
∞
𝑛=3  converges by the comparison test. 

 

       If we had   ∑
1

𝑛2−1
∞
𝑛=2 ,  we could NOT use the comparison test with 

∑
1

𝑛2
∞
𝑛=2  , which converges, because 

1

𝑛2 <
1

𝑛2−1
  (i.e., the inequality goes the 

wrong way).  But somehow, it seems like the two series should behave the same 
way. 

 

Limit Comparison Test Theorem:  Suppose ∑ 𝑎𝑛
∞
𝑛=1  and  ∑ 𝑏𝑛

∞
𝑛=1  are series with 

positive terms.  If lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= 𝑐,  where 𝑐 is a finite number, 𝑐 > 0, then either 

both series converge of both diverge.    

 

Ex.   Determine the convergence of  ∑
1

𝑛2−1
∞
𝑛=2  . 

 

Now we can use ∑
1

𝑛2
∞
𝑛=2  as part of the limit comparison test: 

Let 𝑎𝑛 =
1

𝑛2−1
   and  𝑏𝑛 =

1

𝑛2   

(it doesn’t matter which we made 𝑎𝑛  and which we made 𝑏𝑛). 
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lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= lim

𝑛→∞

1

𝑛2−1
1

𝑛2

= lim
𝑛→∞

𝑛2

𝑛2−1
= 1. 

Since ∑
1

𝑛2
∞
𝑛=2  converges (it’s a 𝑝-series with 𝑝 > 1),  ∑

1

𝑛2−1
∞
𝑛=2  

 converges by the limit comparison test. 

 

 

 

Note:  When trying to determine whether a sum where 𝑎𝑛 is a positive fraction 
converges or diverges, just look at the fastest growing terms in the numerator 

and denominator.  For example, ∑
3𝑛4−2𝑛2+4

6𝑛6+2𝑛3+𝑛
∞
𝑛=1   will converge or diverge 

depending on whether ∑
3𝑛4

6𝑛6
∞
𝑛=1 = ∑

1

2𝑛2
∞
𝑛=1   converges (which it does 

because it’s 
1

2
 times a 𝑝-series with 𝑝 = 2 > 1) or diverges.  This is a good way 

to get a series to use in the limit comparison test. 

 

 

Ex.   Determine the convergence of   ∑
1

5𝑛+3
∞
𝑛=1  . 

 

 

 ∑
1

5𝑛
∞
𝑛=1 =

1

5
∑

1

𝑛
∞
𝑛=1   diverges since ∑

1

𝑛
∞
𝑛=1  is the harmonic series. 

lim
𝑛→∞

1

5𝑛+3
1

5𝑛

= lim
𝑛→∞

5𝑛

5𝑛+3
= 1,    so ∑

1

5𝑛+3
∞
𝑛=1  diverges by the limit 

comparison test. 
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Ex.  Determine the convergence of   ∑
5𝑛−3

𝑛2−2𝑛+5
∞
𝑛=1  . 

 

 

 ∑
5𝑛

𝑛2
∞
𝑛=1 = 5 ∑

1

𝑛
∞
𝑛=1   diverges, just as it did in the previous example. 

lim
𝑛→∞

5𝑛−3

𝑛2−2𝑛+5
5

𝑛

= lim
𝑛→∞

(
5𝑛−3

𝑛2−2𝑛+5
) ∙ (

𝑛

5
) = lim

𝑛→∞
(

5𝑛2−3𝑛

𝑛2−2𝑛+5
) (

1

5
)  

                          =  lim
     𝑛→∞

𝑛2(5−
3

𝑛
)

𝑛2(1−
2

𝑛
+

5

𝑛2)
(

1

5
) = 1.     

 

 So by the limit comparison test, ∑
5𝑛−3

𝑛2−2𝑛+5
∞
𝑛=1  diverges because 

          ∑
5

𝑛
∞
𝑛=1  diverges. 

 

 

Ex.   Determine the convergence of  ∑
2𝑛+3

√𝑛5−2𝑛3+7

∞
𝑛=2  . 

 

 

The numerator behaves like 2𝑛 and the denominator behaves like 

 √𝑛5 = 𝑛
5

2 . 

Thus, 
2𝑛+3

√𝑛5−2𝑛3+7
 should behave like 

2𝑛

𝑛
5
2

=
2

𝑛
3
2

 . 
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∑
2

𝑛
3
2

∞
𝑛=2 = 2 ∑

1

𝑛
3
2

∞
𝑛=2  converges because ∑

1

𝑛
3
2

∞
𝑛=2  is a 𝑝-series with 

  𝑝 =
3

2
> 1 . 

 

 lim
𝑛→∞

2𝑛+3

√𝑛5−2𝑛3+7
2

𝑛
3
2

= lim
𝑛→∞

2𝑛+3

√𝑛5−2𝑛3+7
 ∙

𝑛
3
2

2
  

   = lim
𝑛→∞

𝑛
5
2(2+

3

𝑛
)

2𝑛
5
2√1−

2

𝑛2+
7

𝑛5

= 1.    

 

So ∑
2𝑛+3

√𝑛5−2𝑛3+7

∞
𝑛=2  converges by the limit comparison test. 

 

 

 

 


