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Geometric and Telescoping Series 

 If we add the terms of a sequence we get a series: 

Sequence:      𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, … 

Series:             𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + ⋯ 

Key Question:  When does the sum of an infinite number of terms have a finite 
answer? 

Answer:   Given a series  ∑ 𝑎𝑖
∞
𝑖=1 ,   we add up the first 𝑛 terms and call this 𝑆𝑛: 

                𝑆𝑛 = ∑ 𝑎𝑖
𝑛
𝑖=1 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + ⋯ + 𝑎𝑛. 

If the sequence {𝑆𝑛} converges to 𝑆 < ∞ i.e., lim
𝑛→∞

𝑆𝑛 = 𝑆, then we call 𝑆 the 

sum of the series and we say the series converges to 𝑆. 

If the sequence {𝑆𝑛} doesn’t converge, we say the series diverges.     

Ex.      ∑
1

2𝑖
∞
𝑖=1 =

1

2
+

1

4
+

1

8
+

1

16
+ ⋯ +

1

2𝑛 + ⋯       

𝑆1 =
1

2
     

𝑆2 =
1

2
+

1

4
=

3

4
     

𝑆3 =
1

2
+

1

4
+

1

8
=

7

8
  

⋮ 

𝑆𝑛 =     
1

2
+

1

4
+

1

8
+

1

16
+ ⋯ +

1

2𝑛 =
2𝑛−1

2𝑛  

lim
𝑛→∞

2𝑛−1

2𝑛 = lim
𝑛→∞

2𝑛(1−
1

2𝑛)

2𝑛  = 1.         

Thus we say that ∑
1

2𝑖
∞
𝑖=1  converges, and it converges to 1.    
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     In most series we will deal with, even if it converges, we won’t be able to tell 

what number it converges to.  However, there is a class of series, called geometric 

series, where we will be able to determine what number a convergent series 

converges to.  

 

Def.  A geometric series has the form: 

      𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + 𝑎𝑟4 + 𝑎𝑟5 + ⋯ 𝑎𝑟𝑛 + ⋯ = ∑ 𝑎𝑟𝑖−1∞
𝑖=1 . 

 

Notice for a geometric series, to get from one term, say 𝑎𝑟3, to the next term, 

𝑎𝑟4, you always multiply by the same number, 𝑟. 

 

Ex.     ∑
1

2𝑖
∞
𝑖=1 =

1

2
+

1

4
+

1

8
+

1

16
+ ⋯ +

1

2𝑛 + ⋯   is a geometric series   

          with  𝑎 =
1

2
 , and 𝑟 =

1

2
 . 

 

Ex.    ∑ (−1)𝑖(
2

3
)𝑖∞

𝑖=1 = −
2

3
+

4

9
−

8

27
+

16

81
+ ⋯ + (−1)𝑛(

2

3
)𝑛 + ⋯   is 

         a geometric series with 𝑎 = −
2

3
 ,  and  𝑟 = −

2

3
 . 

 

Ex.     ∑ (
2

3
)𝑖+2 =∞

𝑖=1 (
2

3
)

3
+ (

2

3
)4 + (

2

3
)5 + (

2

3
)6 + ⋯ + (

2

3
)𝑛+2 + ⋯ 

                              =
8

27
+

16

81
+

32

243
+

64

729
+ ⋯ is a geometric series with 

  𝑎 =
8

27
  and  𝑟 =

2

3 
 . 

 

Ex.     ∑ 2(10)𝑖−1∞
𝑖=1 = 2 + 20 + 200 + 2000 + ⋯ + 2(10)𝑛−1 + ⋯         

           is a geometric series with 𝑎 = 2  and 𝑟 = 10. 
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Sum of an Infinite Geometric Series 

     For a geometric series, ∑ 𝑎𝑟𝑖−1∞
𝑖=1 ,  we have: 

              𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + 𝑎𝑟4 + 𝑎𝑟5 + ⋯ 𝑎𝑟𝑛−1    

            𝑟𝑆𝑛 =        𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + 𝑎𝑟4 + 𝑎𝑟5 + ⋯ 𝑎𝑟𝑛−1 + 𝑎𝑟𝑛  

 𝑆𝑛 −  𝑟𝑆𝑛 = 𝑎 − 𝑎𝑟𝑛 =𝑎(1 − 𝑟𝑛) 

𝑆𝑛(1 − 𝑟) =  𝑎(1 − 𝑟𝑛)  

              𝑆𝑛 =
𝑎(1−𝑟𝑛) 

(1−𝑟)
  . 

The geometric series,  ∑ 𝑎𝑟𝑖−1∞
𝑖=1 , converges when the sequence 

{𝑆𝑛} converges.  That is when: 

lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

𝑎(1−𝑟𝑛) 

(1−𝑟)
  converges. 

If   −1 < 𝑟 < 1, then we have: 

lim
𝑛→∞

𝑎(1−𝑟𝑛) 

(1−𝑟)
=

𝑎

1−𝑟
 . 

     Thus for an infinite geometric series we have: 

 ∑ 𝑎𝑟𝑖−1∞
𝑖=1 =

𝑎

1−𝑟
  if  |𝑟| < 1,  i.e. the series converges. 

If  |𝑟| ≥ 1 i.e., if 𝑟 ≥ 1 or 𝑟 ≤ −1, the infinite geometric series diverges. 

 

Ex.    ∑ (−1)𝑖(
2

3
)𝑖∞

𝑖=1 = −
2

3
+

4

9
−

8

27
+

16

81
+ ⋯ + (−1)𝑛(

2

3
)𝑛 + ⋯   is   

          a geometric series with 𝑎 = −
2

3
 , and  𝑟 = −

2

3
 .  Since |𝑟| < 1, this series   

          converges to: 

        𝑆 =
𝑎

1−𝑟
=

−
2
3

1−(−
2
3

)
=

−
2
3

5
3

= (−
2

3
) (

3

5
) = −

2

5
 .    
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Ex.     Determine if the series converges or diverges.  If it converges, what does it 
 converge to? 

a.     ∑ (sin 4)𝑛∞
𝑛=1  

b.     ∑ (3)2𝑛−1∞
𝑛=1 (4)1−2𝑛 

 

a. ∑ (sin 4)𝑛∞
𝑛=1 = (sin 4) + (sin 4)2 + (sin 4)3 + ⋯ + (sin 4)𝑛 + ⋯ 

This is a geometric series with 𝑎 = sin 4 and 𝑟 = sin 4. 

Since |sin 4| < 1, the series converges and:  

∑ (sin 4)𝑛∞
𝑛=1 =

𝑎

1−𝑟
=

sin 4

1−sin 4
 .  

 

 

b. ∑ (3)2𝑛−1∞
𝑛=1 (4)1−2𝑛 = ∑

1

3
(3)2𝑛 ∙ 4(4)−2𝑛∞

𝑛=1  

                                                = ∑
4

3
(

3

4
)

2𝑛
∞
𝑛=1  

=
4

3
(

3

4
)

2
+

4

3
(

3

4
)

4
+

4

3
(

3

4
)

6
+

4

3
(

3

4
)

8
+ ⋯  

Thus, this is a geometric series with 

 𝑎 =
4

3
(

3

4
)

2
=

3

4
;    𝑟 = (

3

4
)

2
=

9

16
 . 

Since |𝑟| =
9

16
< 1 the series converges and: 

∑ (3)2𝑛−1(4)1−2𝑛∞
𝑛=1 =

𝑎

1−𝑟
=

3
4

1−
9

16

=
3
4
7

16

=
3

4
∙

16

7
=

12

7
 .     
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Ex.   Write 3.621212121 … = 3.621̅̅̅̅  as a ratio of integers. 

 

 

3.621212121 … = 3.6 +
21

103 +
21

105 +
21

107 + ⋯     

   After the 3.6 we have a geometric series with 𝑎 =
21

103 and   𝑟 =
1

102 . 

Since |𝑟| =
1

102 < 1 the series converges.  

Thus we can write: 

 

3.6 +
21

103 +
21

105 +
21

107 + ⋯ = 3.6 + 

21

103

1−
1

102

 

 

                  = 3.6 +  
(

21

1000
)

99

100

 

         =
36

10
+

21

990
  

         =
239

66
 .  
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     There is another class of series (NOT geometric series) where we can find the 
infinite sum.  These are called Telescoping Series. 

 

Ex.      Evaluate ∑
1

𝑛(𝑛+1)
∞
𝑛=1 =

1

1∙2
+

1

2∙3
+

1

3∙4
+

1

4∙5
+ ⋯ +

1

𝑛(𝑛+1)
+ ⋯ 

       

The trick is to use partial fractions. 

1

𝑛(𝑛+1)
=

𝐴

𝑛
+

𝐵

𝑛+1
 =

𝐴(𝑛+1)+𝐵(𝑛)

𝑛(𝑛+1)
.        

The numerators have to be equal so: 

1 = 𝐴(𝑛 + 1) + 𝐵(𝑛) ;   This is true for all numbers 𝑛, so in particular: 

𝑛 = 0 means 1 = 𝐴  

𝑛 = −1 means 1 = −𝐵 𝑜𝑟 𝐵 = −1 .      

 Thus we have: 

1

𝑛(𝑛+1)
=

1

𝑛
−

1

𝑛+1
  

This means that: 

∑
1

𝑛(𝑛+1)
∞
𝑛=1 = ∑ (

1

𝑛
∞
𝑛=1 −

1

𝑛+1
)  

                      = (1 −
1

2
) + (

1

2
−

1

3
) + (

1

3
−

1

4
) + ⋯ + (

1

𝑛
−

1

𝑛+1
) + ⋯ 

So  𝑆𝑛 = 1 −
1

𝑛+1
.    

Thus, lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

(1 −
1

𝑛+1
) = 1.      

So this means that: 

∑
1

𝑛(𝑛+1)
∞
𝑛=1 = 1 . 
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Ex.      ∑
1

𝑛
∞
𝑛=1    is called the Harmonic Series.    This is a very important series. 

 Show that the harmonic series is divergent.  Notice that since the 
 harmonic series is divergent, then any non-zero multiple of the harmonic 

 series is also divergent (e.g. ∑
1

100𝑛
∞
𝑛=1   is divergent). 

 

 

𝑆2 = 1 +
1

2
     

 

𝑆4 = 1 +
1

2
+ (

1

3
+

1

4
) > 1 +

1

2
+ (

1

4
+

1

4
) > 1 +

2

2
       

 

𝑆8 = 1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
)        

       > 1 +
1

2
+ ( 

1

4
+

1

4
) + (

1

8
+

1

8
+

1

8
+

1

8
) = 1 +

3

2
          

 

𝑆16 = 1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
 ) + (

1

9
+

1

10
+ ⋯ +

1

16
)   

        > 1 +
1

2
+

1

2
+

1

2
+

1

2
= 1 +

4

2
 .      

 

𝑆2𝑛 > 1 +
𝑛

2
 , which shows 𝑆2𝑛 → ∞ as 𝑛 → ∞. Thus, the harmonic 

series diverges. 
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Theorem:   If the series ∑ 𝑎𝑖
∞
𝑖=1  is convergent, then lim

𝑛→∞
𝑎𝑛 = 0. 

 

Proof:    Let 𝑆𝑛 = 𝑎1 + ⋯ + 𝑎𝑛.  

   Then 𝑎𝑛 = 𝑆𝑛 − 𝑆𝑛−1, since we know ∑ 𝑎𝑖
∞
𝑖=1  converges. 

   lim
𝑛→∞

𝑆𝑛 = 𝑆 and lim
𝑛→∞

𝑆𝑛−1 = 𝑆. 

  Thus, lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

(𝑆𝑛 − 𝑆𝑛−1) = 0. 

 

Divergence Test Theorem:   

If you have a series ∑ 𝑎𝑖
∞
𝑖=1  and lim

𝑛→∞
𝑎𝑛 ≠ 0, then    

∑ 𝑎𝑖
∞
𝑖=1   diverges. 

 

 

NOTE:  You can never use the divergence test to show a series converges, only to   
   show a series diverges. 

 

The fact that lim
𝑛→∞

𝑎𝑛 = 0 for a series ∑ 𝑎𝑖
∞
𝑖=1  tells us nothing about 

 whether the series converges of diverges: 

 

∑
1

𝑖
∞
𝑖=1   has lim

𝑛→∞
𝑎𝑛 = 0 and it diverges.    

∑
1

2𝑗
∞
𝑗=1   also has lim

𝑛→∞
𝑎𝑛 = 0, but it converges.     
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Ex.   Show ∑
2𝑛3

3𝑛3+1
∞
𝑛=1  diverges. 

 

 

lim
𝑛→∞

2𝑛3

3𝑛3+1
= lim

𝑛→∞

𝑛3(2)

𝑛3(3+
1

𝑛3)
=

2

3
≠ 0. 

 

lim
𝑛→∞

𝑎𝑛 =
2

3
 ≠ 0 ⇒   ∑

2𝑛3

3𝑛3+1
∞
𝑛=1  diverges by the divergence theorem. 

                                                                                                

 

Theorem:   If ∑ 𝑎𝑖
∞
𝑖=1  and ∑ 𝑏𝑖

∞
𝑖=1   are convergent series, then so are ∑ 𝑐𝑎𝑖

∞
𝑖=1  

         (𝑐 a constant),  ∑ (𝑎𝑖
∞
𝑖=1 + 𝑏𝑖) ,  ∑ (𝑎𝑖

∞
𝑖=1 − 𝑏𝑖) , and: 

 

1. ∑ 𝑐𝑎𝑖
∞
𝑖=1 = 𝑐 ∑ 𝑎𝑖

∞
𝑖=1    

 
2. ∑ (𝑎𝑖

∞
𝑖=1 + 𝑏𝑖) =   ∑ 𝑎𝑖

∞
𝑖=1   + ∑ 𝑏𝑖

∞
𝑖=1  

 

3. ∑ (𝑎𝑖
∞
𝑖=1 − 𝑏𝑖) =   ∑ 𝑎𝑖

∞
𝑖=1   − ∑ 𝑏𝑖

∞
𝑖=1  

 

The previous theorem follows from the limit laws for sequences applied to the 

partial sums, 𝑆𝑛, of the series. 
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Ex.   Find  ∑
2

(𝑛2−4𝑛+3)
∞
𝑛=4  . 

 

 

∑
2

(𝑛2−4𝑛+3)
∞
𝑛=4 = ∑

2

(𝑛−3)(𝑛−1)
∞
𝑛=4   

 

2

(𝑛−3)(𝑛−1)
=

𝐴

𝑛−3
+

𝐵

𝑛−1
=

𝐴(𝑛−1)+𝐵(𝑛−3)

(𝑛−3)(𝑛−1)
  

      2 = (𝐴 + 𝐵)𝑛 + (−𝐴 − 3𝐵)   

       𝐴 + 𝐵 = 0 

            −𝐴 − 3𝐵 = 2 

                𝐵 = −𝐴 

            −𝐴 + 3𝐴 = 2 

   2𝐴 = 2 

     𝐴 = 1 

     𝐵 = −1  

  ∑
2

(𝑛2−4𝑛+3)
∞
𝑛=4 = ∑ (

1

𝑛−3
−

1

𝑛−1
)∞

𝑛=4   

     = (
1

1
−

1

3
) + (

1

2
−

1

4
) + (

1

3
−

1

5
) + (

1

4
−

1

6
) + ⋯ + (

1

𝑛−3
−

1

𝑛−1
) + ⋯   

 

𝑆𝑛 =
1

1
+

1

2
−

1

𝑛−2
−

1

𝑛−1
   

     lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

(
1

1
+

1

2
−

1

𝑛−2
−

1

𝑛−1
) =

3

2
 . 

So:      ∑
2

(𝑛2−4𝑛+3)
∞
𝑛=4 =

3

2
 . 
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Ex.     Find  ∑
2𝑛−1−4(3)𝑛

4𝑛
∞
𝑛=2  

 

∑
2𝑛−1−4(3)𝑛

4𝑛
∞
𝑛=2 = ∑

2𝑛−1

4𝑛
∞
𝑛=2 − ∑

4(3)𝑛

4𝑛
∞
𝑛=2   

   = ∑
2−1(2)𝑛

4𝑛
∞
𝑛=2 − ∑ 4 (

3

4
)

𝑛
∞
𝑛=2   

    =
1

2
∑ (

1

2
)

𝑛
∞
𝑛=2 − 4 ∑ (

3

4
)

𝑛
∞
𝑛=2    

 

∑ (
1

2
)

𝑛
∞
𝑛=2 = (

1

2
)

2

+ (
1

2
)

3

+ (
1

2
)

4

+ ⋯ ;     ∑ (
3

4
)

𝑛
∞
𝑛=2 = (

3

4
)

2

+ (
3

4
)

3

+ ⋯    

𝑎 = (
1

2
)

2

=
1

4
                                              𝑎 = (

3

4
)

2

=
9

16
      

  𝑟 =
1

2
                                                                   𝑟 =

3

4
            

 

∑ (
1

2
)

𝑛
=

𝑎

1−𝑟
=

1

4

1−
1

2

=
1

2
∞
𝑛=2            ∑ (

3

4
)

𝑛
∞
𝑛=2 =

𝑎

1−𝑟
=

9

16

1−
3

4

=
9

4
    

 

∑
2𝑛−1−4(3)𝑛

4𝑛
∞
𝑛=2 =

1

2
(

1

2
) − 4 (

9

4
) =

1

4
− 9 = −

35

4
 . 

 


