Sequences

A sequence is a list of numbers:

 $a_{1,} a_{2,} a_{3,} a_{4,} \dots, a_{n}, \dots$

This sequence may be denoted by $\{a_{1,} a_{2,} a_{3,} a_{4,} \dots, a_n, \dots\}$, $\{a_n\}$, or just a_n .

Ex.

a.
$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots$$
 where $a_n = 1/n$; or $\{1/n\}$

b.
$$1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}, \dots$$
 in this sequence $a_n = (-1)^{n-1}(\frac{1}{2^{n-1}});$ or $\{a_n\} = \{(-1)^{n-1}(\frac{1}{2^{n-1}})\}$

c.
$$\sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}, ...$$
 in this sequence $a_n = \sqrt{n+4}$; or $\{a_n\} = \{\sqrt{n+4}\}$

Ex. Find a formula for the nth term of:

a.
$$\left\{-\frac{2}{3}, \frac{3}{4}, -\frac{4}{5}, \frac{5}{6}, -\frac{6}{7}, \frac{7}{8}, \ldots\right\}$$

b. $\{-2, 3, -2, 3, -2, 3, \ldots\}$

a.
$$a_n = (-1)^n \frac{n+1}{n+2}$$

b. $a_{2n-1} = -2$
 $a_{2n} = 3$

Some sequences don't have an easy formula for the *n*th term:

Ex. The Fibonacci sequence:

$$a_1 = 1$$
, $a_2 = 1$, $a_3 = 2$, $a_4 = 3$, $a_5 = 5$, $a_6 = 8$, $a_7 = 13$,
 $a_n = a_{n-1} + a_{n-2}$

Given a sequence of numbers $\{a_n\}$, we can ask if the sequence **converges** to some number.

Def. A sequence $\{a_n\}$ has a **limit** L, written $\lim_{n \to \infty} a_n = L$ or $a_n \to L$ as $n \to \infty$, if for every $\epsilon > 0$ there is an integer N such that if n > N, then $|a_n - L| < \epsilon$. If $\lim_{n \to \infty} a_n = L < \infty$, then we say the sequence $\{a_n\}$ converges. If a sequence doesn't converge, then we say it **diverges**.

Ex.
$$\left\{\frac{1}{n}\right\} = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots$$
 converges to 0 since $\lim_{n \to \infty} \frac{1}{n} =$

0.

The limit properties we know for functions also hold for sequences.

Theorem: If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and C is a constant, then:

1.
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

2.
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

3.
$$\lim_{n \to \infty} (Ca_n) = C \lim_{n \to \infty} (a_n)$$

4.
$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} (a_n) \lim_{n \to \infty} (b_n)$$

- 5. $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n}{b_n} / \lim_{n \to \infty} \frac{b_n}{b_n};$ if $\lim_{n \to \infty} \frac{b_n}{b_n} \neq 0.$
- 6. $\lim_{n \to \infty} (a_n)^p = (\lim_{n \to \infty} a_n)^p; \quad \text{if } p > 0 \text{ and } a_n > 0$

The Squeeze Theorem also has a version for sequences.

Squeeze Theorem for functions: If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L$ and $f(x) \le h(x) \le g(x)$, then $\lim_{x \to a} h(x) = L$.

Squeeze theorem for Sequences: If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Ex. Find $\lim_{n \to \infty} \left| \frac{\sin(n)}{n} \right|$.

Notice that $0 \le |\sin(x)| \le 1$ for all x That means:

$$\frac{0}{n} \le \left|\frac{\sin(n)}{n}\right| \le \frac{1}{n} \quad \text{or} \quad 0 \le \left|\frac{\sin(n)}{n}\right| \le \frac{1}{n}.$$

Since
$$\lim_{n \to \infty} 0 = 0$$
 and $\lim_{n \to \infty} \frac{1}{n} = 0$, by the squeeze theorem $\lim_{n \to \infty} \left| \frac{\sin(n)}{n} \right| = 0$.

Here's another useful theorem:

Theorem: If $\lim_{n \to \infty} |a_n| = 0$, then $\lim_{n \to \infty} a_n = 0$.

Ex. We saw that
$$\lim_{n \to \infty} \left| \frac{\sin(n)}{n} \right| = 0$$
. Then by this theorem $\lim_{n \to \infty} \frac{\sin(n)}{n} = 0$.

Theorem: If $\lim_{x\to\infty} f(x) = l$ and $f(n) = a_n$ then $\lim_{n\to\infty} a_n = l$.

Ex. Find the limit of the following sequences if they exist:

a.
$$a_n = \frac{n^2 + n}{2n^2 + 1}$$

b.
$$a_n = \frac{\ln (n)}{n}$$

c.
$$a_n = \frac{(-1)^n}{n}$$

d.
$$a_n = \frac{2^n}{n^2}$$

e.
$$a_n = \frac{n!}{n^n}$$

f.
$$a_n = (-1)^n$$

a.
$$\lim_{x \to \infty} \frac{x^2 + x}{2x^2 + 1} = \lim_{x \to \infty} \frac{2x + 1}{4x} = \lim_{x \to \infty} \frac{2}{4} = \frac{1}{2}$$
 by L'Hospital's Rule
so:
$$\lim_{n \to \infty} \frac{n^2 + n}{2n^2 + 1} = \frac{1}{2}.$$

b.
$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)}{1} = 0$$
 by L'Hospital's Rule
so: $\lim_{n \to \infty} \frac{\ln n}{n} = 0.$

c.
$$\left|\frac{(-1)^n}{n}\right| = \frac{1}{n}$$
, and
 $\lim_{x \to \infty} \frac{1}{x} = 0$
so: $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$ Here we

d.
$$\lim_{x \to \infty} \frac{2^x}{x^2} = \lim_{x \to \infty} \frac{(\ln 2)2^x}{2x} = \lim_{x \to \infty} \frac{(\ln 2)^2 2^x}{2} = \infty$$
, by L'Hospital's Rule.
So:
$$\lim_{n \to \infty} \frac{2^n}{n^2} = \infty$$
, ie, $\{\frac{2^n}{n^2}\}$ diverges.

e. $0 \le a_n = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{n \cdot n \cdot \dots \cdot n} = \frac{1}{n} \left(\frac{2}{n} \cdot \frac{3}{n} \cdot \dots \cdot \frac{n}{n} \right) \le \frac{1}{n}$ so by the Squeeze Theorem, we know $0 \le a_n \le \frac{1}{n}$ and $\lim_{n \to \infty} \frac{1}{n} = 0$

so: $\lim_{n\to\infty}a_n=0.$

f.
$$a_n = (-1)^n$$
 thus $\{a_n\} = -1, 1, -1, 1, -1, 1, ...$ so $\{a_n\}$ diverges.

Ex. $a_n = r^n$; for what values of r is the sequence convergent?

From the graph of exponential functions we know:

$$\lim_{x \to \infty} a^x = \begin{cases} \infty & \text{if } a > 1\\ 0 & \text{if } 0 < a < 1 \end{cases}$$

SO

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if } r > 1\\ 0 & \text{if } 0 < r < 1 \end{cases}$$

If
$$r = 1$$
, then $\lim_{n \to \infty} 1^n = 1$
If $r = 0$, then $\lim_{n \to \infty} 0^n = 0$
If $-1 < r < 0$, then $0 < |r| < 1$ so:
 $\lim_{n \to \infty} |r|^n = 0 \implies \lim_{n \to \infty} r^n = 0$.
If $r \le -1$, then $\{r^n\}$ diverges because it oscillates
similarly to $a_n = (-1)^n$.

Ex. Determine the convergence of $a_n = \frac{3^{n+1}}{4^n}$.

$$a_n = \frac{3^n \cdot 3}{4^n} = 3 \cdot \left(\frac{3}{4}\right)^n$$

$$b_n = \left(\frac{3}{4}\right)^n \text{ converges to } 0 \Rightarrow a_n = 3 \left(\frac{3}{4}\right)^n \text{ converges to } 0 \text{ too.}$$

Ex. Determine the convergence of $a_n = \frac{2(n+1)!}{n!}$.

$$a_n = \frac{2(n+1)(n!)}{n!} = 2(n+1)$$
 diverges to ∞ .

Def. A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is:

$$a_1 < a_2 < a_3 < a_4 < \dots < a_n < \dots$$

It's called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$, that is:

$$a_1 > a_2 > a_3 > a_4 > \dots > a_n > \dots$$

Ex. $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots, \frac{1}{n}, \dots$ is a decreasing sequence because:

$$a_{n+1} = \frac{1}{n+1} < \frac{1}{n} = a_n$$

 $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \dots, \frac{n}{n+1}, \dots$ is an increasing sequence because

$$a_{n+1} = \frac{n+1}{n+2}$$
 and $a_n = \frac{n}{n+1}$

so
$$\frac{n+1}{n+2} > \frac{n}{n+1}$$
 exactly when $(n+1)^2 > n(n+2)$.

Multiplying out both sides we get:

$$n^2 + 2n + 1 > n^2 + 2n$$

This is equivalent to 1 > 0, which of course is true, so:

$$a_n < a_{n+1}$$
 for all $n \ge 1$.

Another handy way to show that a sequence is increasing or decreasing is to show that the associated function (what you get when you put "x" in for "n") is either increasing or decreasing for $x \ge 1$.

Ex. Show $a_n = \frac{n}{n+1}$ is increasing.

The associated function is $f(x) = \frac{x}{x+1}$. Using the quotient rule we have:

$$f'(x) = \frac{1}{(x+1)^2} > 0$$
, for $x \ge 1$.

So, f(x) is increasing for $n \ge 1$, hence $a_n = \frac{n}{n+1}$ is increasing.

Def. A sequence $\{a_n\}$ is **bounded above** if there is some number M such that

 $a_n \leq M$, for all $n \geq 1$.

A sequence is **bounded below** if there is a number m such that $m \le a_n$, for all $n \ge 1$.

A sequence is **bounded** if it is bounded above and bounded below.

Ex. $\{a_n\} = \{n\}$ is bounded below by 1, but not bounded above (and thus not a bounded sequence).

Ex. $\{a_n\} = \{\frac{1}{n}\}$ is bounded below by 0 and bounded above by 1, thus bounded.

Ex.
$$\{a_n\} = \left\{\frac{\cos(n\pi)}{n}\right\} = -1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \frac{1}{6}, \dots$$
 is bounded above by $\frac{1}{2}$ and below by -1 , thus bounded.