Sequences

A sequence is a list of numbers:

 $a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$

This sequence may be denoted by $\{a_1, a_2, a_3, a_4, ..., a_n, ...\}$, $\{a_n\}$, or just a_n .

Ex.

a.
$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots
$$
 where $a_n = 1/n$; or $\{1/n\}$

b.
$$
1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}, \dots
$$
 in this sequence $a_n = (-1)^{n-1}(\frac{1}{2^{n-1}})$; or
 $\{a_n\} = \{(-1)^{n-1}(\frac{1}{2^{n-1}})\}$

c.
$$
\sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}, ...
$$
 in this sequence $a_n = \sqrt{n+4}$; or
 $\{a_n\} = \{\sqrt{n+4}\}\$

Ex. Find a formula for the n th term of:

a.
$$
\left\{-\frac{2}{3}, \frac{3}{4}, -\frac{4}{5}, \frac{5}{6}, -\frac{6}{7}, \frac{7}{8}, ...\right\}
$$

b. $\{-2, 3, -2, 3, -2, 3, ...\}$

a.
$$
a_n = (-1)^n \frac{n+1}{n+2}
$$

b. $a_{2n-1} = -2$
 $a_{2n} = 3$

Some sequences don't have an easy formula for the n th term:

Ex. The Fibonacci sequence:

Ex. $\begin{cases} \frac{1}{n} \end{cases}$

$$
a_1 = 1
$$
, $a_2 = 1$, $a_3 = 2$, $a_4 = 3$, $a_5 = 5$, $a_6 = 8$, $a_7 = 13$,
 $a_n = a_{n-1} + a_{n-2}$

Given a sequence of numbers $\{a_n\}$, we can ask if the sequence **converges** to some number.

Def. A sequence $\{a_n\}$ has a limit L , written $\lim\limits_{n\rightarrow\infty}$ $\lim_{n\to\infty}a_n=L$ or $a_n\to L$ as $n \to \infty$, if for every $\epsilon > 0$ there is an integer N such that if $n > N$, then $|a_n - L| < \epsilon$. If $\lim_{n \to \infty} a_n = L < \infty$, then we say the sequence $\{a_n\}$ converges. If a sequence doesn't converge, then we say it **diverges**.

$$
\frac{1}{n} = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, ...
$$
 converges to 0 since $\lim_{n \to \infty} \frac{1}{n} = 0$.

The limit properties we know for functions also hold for sequences.

Theorem: If ${a_n}$ and ${b_n}$ are convergent sequences and C is a constant, then:

1.
$$
\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n
$$

2.
$$
\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n
$$

3.
$$
\lim_{n \to \infty} (Ca_n) = C \lim_{n \to \infty} (a_n)
$$

4.
$$
\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} (a_n) \lim_{n \to \infty} (b_n)
$$

- 5. lim $n\rightarrow\infty$ a_n b_n $=$ \lim $\lim_{n\to\infty} a_n / \lim_{n\to\infty} b_n;$ if $\lim_{n\to\infty} b_n \neq 0.$
- 6. lim $\lim_{n\to\infty}(a_n)^p = (\lim_{n\to\infty}$ $\lim_{n\to\infty}a_n)^p$; if $p>0$ and $a_n>0$

The Squeeze Theorem also has a version for sequences.

Squeeze Theorem for functions: If lim $x \rightarrow a$ $f(x) = \lim$ $x \rightarrow a$ $g(x) = L$ and $f(x) \leq h(x) \leq g(x)$, then \lim $x \rightarrow a$ $h(x) = L$.

Squeeze theorem for Sequences: If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and lim $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$.

Ex. Find lim $n\rightarrow\infty$ $\frac{\sin(n)}{n}$ $\frac{n(n)}{n}$.

Notice that $0 \leq |\sin(x)| \leq 1$ for all x That means:

$$
\frac{0}{n} \leq \left| \frac{\sin(n)}{n} \right| \leq \frac{1}{n} \quad \text{or} \quad 0 \leq \left| \frac{\sin(n)}{n} \right| \leq \frac{1}{n}.
$$

Since
$$
\lim_{n \to \infty} 0 = 0
$$
 and $\lim_{n \to \infty} \frac{1}{n} = 0$, by the squeeze theorem $\lim_{n \to \infty} \left| \frac{\sin(n)}{n} \right| = 0$.

Here's another useful theorem:

Theorem: If lim $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

Ex. We saw that
$$
\lim_{n \to \infty} \left| \frac{\sin(n)}{n} \right| = 0
$$
. Then by this theorem $\lim_{n \to \infty} \frac{\sin(n)}{n} = 0$.

Theorem: If lim $\lim_{x \to \infty} f(x) = l$ and $f(n) = a_n$ then $\lim_{n \to \infty} a_n = l$.

Ex. Find the limit of the following sequences if they exist:

a.
$$
a_n = \frac{n^2 + n}{2n^2 + 1}
$$

\nb. $a_n = \frac{\ln(n)}{n}$
\nc. $a_n = \frac{(-1)^n}{n}$
\nd. $a_n = \frac{2^n}{n^2}$
\ne. $a_n = \frac{n!}{n^n}$
\nf. $a_n = (-1)^n$

a.
$$
\lim_{x \to \infty} \frac{x^2 + x}{2x^2 + 1} = \lim_{x \to \infty} \frac{2x + 1}{4x} = \lim_{x \to \infty} \frac{2}{4} = \frac{1}{2}
$$
 by L'Hospital's Rule
so:
$$
\lim_{n \to \infty} \frac{n^2 + n}{2n^2 + 1} = \frac{1}{2}.
$$

b.
$$
\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)}{1} = 0
$$
 by L'Hospital's Rule
so:
$$
\lim_{n \to \infty} \frac{\ln n}{n} = 0.
$$

c.
$$
\left|\frac{(-1)^n}{n}\right| = \frac{1}{n}, \text{ and}
$$

$$
\lim_{x \to \infty} \frac{1}{x} = 0
$$

so:
$$
\lim \frac{(-1)^n}{n} = 0
$$

 $n\rightarrow\infty$

 \boldsymbol{n}

$$
= 0
$$
 Here we are using the previous 2 theorems.

d.
$$
\lim_{x \to \infty} \frac{2^x}{x^2} = \lim_{x \to \infty} \frac{(\ln 2)2^x}{2x} = \lim_{x \to \infty} \frac{(\ln 2)^2 2^x}{2} = \infty
$$
, by L'Hospital's Rule.
So:
$$
\lim_{n \to \infty} \frac{2^n}{n^2} = \infty
$$
, ie, $\left\{\frac{2^n}{n^2}\right\}$ diverges.

e.
$$
0 \le a_n = \frac{1 \cdot 2 \cdot 3 \cdot ... \cdot n}{n \cdot n \cdot ... \cdot n} = \frac{1}{n} \left(\frac{2}{n} \cdot \frac{3}{n} \cdot ... \cdot \frac{n}{n}\right) \le \frac{1}{n}
$$
 so by the Squeeze Theorem, we know $0 \le a_n \le \frac{1}{n}$ and $\lim_{n \to \infty} \frac{1}{n} = 0$

 so: lim $\lim_{n\to\infty}a_n=0.$

f.
$$
a_n = (-1)^n
$$
 thus $\{a_n\} = -1, 1, -1, 1, -1, 1, ...$ so $\{a_n\}$ diverges.

Ex. $a_n = r^n$; for what values of r is the sequence convergent?

From the graph of exponential functions we know:

$$
\lim_{x \to \infty} a^x = \begin{cases} \infty & \text{if } a > 1 \\ 0 & \text{if } 0 < a < 1 \end{cases}
$$

so

$$
\lim_{n \to \infty} r^n = \begin{cases} \infty & \text{if } r > 1 \\ 0 & \text{if } 0 < r < 1 \end{cases}
$$

If
$$
r = 1
$$
, then $\lim_{n \to \infty} 1^n = 1$
\nIf $r = 0$, then $\lim_{n \to \infty} 0^n = 0$
\nIf $-1 < r < 0$, then $0 < |r| < 1$ so:
\n
$$
\lim_{n \to \infty} |r|^n = 0 \implies \lim_{n \to \infty} r^n = 0.
$$
\nIf $r \le -1$, then $\{r^n\}$ diverges because it oscillates

similarly to $a_n = (-1)^n$.

Ex. Determine the convergence of $a_n=\frac{3^{n+1}}{4^n}$ 4^n .

$$
a_n = \frac{3^n \cdot 3}{4^n} = 3 \cdot \left(\frac{3}{4}\right)^n
$$

$$
b_n = \left(\frac{3}{4}\right)^n
$$
 converges to $0 \Rightarrow a_n = 3\left(\frac{3}{4}\right)^n$ converges to 0 too.

Ex. Determine the convergence of $a_n = \frac{2(n+1)!}{n!}$ $\frac{n!}{n!}$.

$$
a_n = \frac{2(n+1)(n!)}{n!} = 2(n+1)
$$
 diverges to ∞ .

Def. A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is:

$$
a_1
$$

It's called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$, that is:

$$
a_1 > a_2 > a_3 > a_4 > \dots > a_n > \dots
$$

Ex. $1, \frac{1}{2}$ $\frac{1}{2}$, $\frac{1}{3}$ $\frac{1}{3}, \frac{1}{4}$ $\frac{1}{4}, \frac{1}{5}$ $\frac{1}{5}, \frac{1}{6}$ $\frac{1}{6}, \ldots, \frac{1}{n}$ $\frac{1}{n}$, ... is a decreasing sequence because:

$$
a_{n+1} = \frac{1}{n+1} < \frac{1}{n} = a_n
$$

1 $\frac{1}{2}$, $\frac{2}{3}$ $\frac{2}{3}$, $\frac{3}{4}$ $\frac{3}{4}$, $\frac{4}{5}$ $\frac{4}{5}$, $\frac{5}{6}$ $\frac{5}{6}$, $\frac{6}{7}$ $\frac{6}{7}, \ldots, \frac{n}{n+1}$ $n+1$, … is an increasing sequence because

$$
a_{n+1} = \frac{n+1}{n+2}
$$
 and $a_n = \frac{n}{n+1}$

so
$$
\frac{n+1}{n+2} > \frac{n}{n+1}
$$
 exactly when $(n+1)^2 > n(n+2)$.

Multiplying out both sides we get:

$$
n^2 + 2n + 1 > n^2 + 2n
$$

This is equivalent to $1 > 0$, which of course is true, so:

$$
a_n < a_{n+1} \text{ for all } n \ge 1.
$$

 Another handy way to show that a sequence is increasing or decreasing is to show that the associated function (what you get when you put " x " in for " n ") is either increasing or decreasing for $x \geq 1$.

Ex. Show $a_n = \frac{n}{n+1}$ $\frac{n}{n+1}$ is increasing.

The associated function is $f(x) = \frac{x}{x+1}$ $\frac{x}{x+1}$. Using the quotient rule we have:

$$
f'(x) = \frac{1}{(x+1)^2} > 0, \text{ for } x \ge 1.
$$

So, $f(x)$ is increasing for $n \geq 1$, hence $a_n = \frac{n}{n+1}$ $\frac{n}{n+1}$ is increasing.

Def. A sequence $\{a_n\}$ is **bounded above** if there is some number M such that

 $a_n \leq M$, for all $n \geq 1$.

A sequence is **bounded below** if there is a number *m* such that $m \le a_n$, for all $n \geq 1$.

A sequence is **bounded** if it is bounded above and bounded below.

Ex. ${a_n} = {n}$ is bounded below by 1, but not bounded above (and thus not a bounded sequence).

Ex. $\{a_n\} = \{\frac{1}{n}\}$ $\frac{1}{n}$ is bounded below by 0 and bounded above by 1, thus bounded.

Ex. ${a_n} = \frac{\cos(n\pi)}{n}$ $\left(\frac{(n\pi)}{n}\right) = -1, \frac{1}{2}$ $\frac{1}{2}$, $-\frac{1}{3}$ $\frac{1}{3}, \frac{1}{4}$ $\frac{1}{4}$, $-\frac{1}{5}$ $\frac{1}{5}$, $\frac{1}{6}$ $\frac{1}{6}$, ... is bounded above by 1 2 and below by -1 , thus bounded.