Arc Length

To find the length of a continuously differentiable curve y = f(x); a < x < b,
we divide the interval [a, b] into n equal subintervals. The length of each
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We then approximate the length of the curve for x;_; < x < Xx; with the length
of the line segment connecting (x;_1, ¥;—1), (;, ;). That length is written as:
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If we add up the lengths of all of these line segments and let the number of
subintervals, n, go to infinity, then we get:
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or equivalently:
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Ex. Find the length of the curve given by y = 3X2 + 1for0 < x < 3.
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If a curve is given by x = g(y), ¢ <y < d where g'(y) is continuous, then a
similar argument to the case where y = f(x) gives us:

b~
|
T
1
(S Y
<
p—
_|_
)
Q
—~
<
-/
N—’
S ¥
<
|
T
L3
S}
2
=
+
—
Q‘|9-
<=
NS
N
S ¥
<



Ex. Findthe lengthof x = In(cosy); 0<y < %.
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We saw earlier that:

j secxdx = In|secx + tanx| + C

= L =In|secy + tanyllz;g
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= ln(\/i + 1).
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Ex. Find the length of the curve given by y = % + o 1<x<2
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It’s easy to find arc length problems where it’s very difficult (or not possible) to
find an elementary anti-derivative for the resulting integrand.

Ex. Y = %ln(l + x2).

a) Set up the integral of the arc lengthof y for0 < x < 2

b) Use Simpson’s Rule with n = 4 to approximate the value of the integral
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In the study of curves it’s useful to introduce the arc length function, s(x). This
function measures the length of the curve y = f(t) from a fixed point, t = a,

to a variable point, t = x.

s(x) =f:=x\/1+(f’(t))2 dt.

=a

Notice that by The Fundamental Theorem of Calculus:

%=\/1+(f’(t))2=\/1+(3—z)2

OR

ds = |1+ (%)2 dx.

Also if x = g(y), then we get:

Z—; = \/1 + (g'(y))z = \/1 + (Z—f})z

OR
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Ex. Find the arc length function for the curve y = 3 X2 + 1 taking (0, 1) as the

starting point.
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Notice that in the first example we calculated the length of y = §x2 + 1 for

0 < x < 3, meaning we calculated s(3) for the previous example.

s =2[a+3p-1]=2

If we wanted the length of this curve between x = 0 and x = 8, then we would
calculate s(8).

s(8) =§[(1+8)§—1] =§(93—1)=5§.



