Volumes: Integrating Cross-sections- HW Problems

1. Find the volume of the solid whose base is the disk in the x-y plane bounded by $x^2 + y^2 = 9$ and whose cross sections when sliced by a plane perpendicular to the x-axis are

- a. squares
- b. semicircles
- c. equilateral triangles.

2. find the volume of the solid whose base is the region in the x-y plane bounded by $y = 4 - x^2$ and the x-axis and whose cross sections when sliced by a plane perpendicular to the y-axis are

- a. squares
- b. isosceles right triangles with the hypotenuse in the base.

Find the volume of the solid obtained by rotating the region bounded by the curves below about the given line.

3.
$$y = 1 - x$$
, $x = 0$, $y = 0$, about the *x*-axis
4. $y = x^2$, $y = 4$, $x = 0$, about the *x*-axis
5. $y = x^2$, $y = 0$, $x = 2$, about the *y*-axis
6. $y = e^x$, $x = 0$, $x = 1$, $y = 0$, about the *x*-axis
7. $y = x^2$, $y = \sqrt{x}$, about the line $y = -2$
8. $y = x^2$, $y = \sqrt{x}$, about the line $x = -1$

9. y = cos(x), y = sin(x), x = 0, about the line y = 010. y = cos(x), y = sin(x), x = 0, about the line y = 2.