Inverse Functions

Recall that the **domain** of a function, f, is the set of values (which will be real numbers in this case) that we can "plug into" the function. The **range** of a function, f, is the set of all values that the function f takes on.

x	f(x)	x	g(x)
1	-2	$\frac{1}{6}$	-3
3	$\frac{1}{2}$	$\frac{1}{5}$	2
5	0	$\frac{1}{4}$	-3
7	3	$\frac{1}{3}$	$\frac{2}{3}$
9	1		

Ex. Identify the domain and range for f and g below.

Domain of $f = \{1, 3, 5, 7, 9\}$
Range of $f = \{-2, 0, \frac{1}{2}, 1, 3\}$

Domain of $g = \left\{\frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}\right\}$ Range of $g = \left\{-3, \frac{2}{3}, 2\right\}$.

Ex. Let $F(x) = \sqrt{x-1}$ and $G(x) = x^2$. Find the natural domain (i.e. the largest subset of the real numbers, \mathbb{R}) and range of F and G.

In order for $\sqrt{x-1}$ to be a real number we must require $x-1 \ge 0$.

Thus the domain of $F = \{x \in \mathbb{R} | x \ge 1\}$. $F(1) = \sqrt{1-1} = 0$ and F(x) is a continuous, increasing function where: $\lim_{x \to \infty} F(x) = \infty$. So we have range of $F = \{y \in \mathbb{R} | y \ge 0\}$. The domain of $G = \{x \in \mathbb{R}\}$ since there are no restrictions on which real numbers can be "plugged into" G.

The range of $G = \{y \in \mathbb{R} | y \ge 0\}$ since $x^2 \ge 0$ and:

$$\lim_{x \to \pm \infty} x^2 = \infty$$

Def. A function, f, is called a **one-to-one function** if $f(x_1) = f(x_2)$ implies $x_1 = x_2$ for any x_1 and x_2 in the domain of f.

Notice that a function is one-to-one when you can't have two different elements of the domain have the same value f(x).

Ex. Determine if f or g is a one-to-one function.

x	f(x)	x	g(x)
1	-2	$\frac{1}{6}$	-3
3	$\frac{1}{2}$	$\frac{1}{5}$	2
5	0	$\frac{1}{4}$	-3
7	3	$\frac{1}{3}$	$\frac{2}{3}$
9	1		

f is a one-to-one function since no two domain values has the same f(x).

g is not a one-to-one function since $g\left(\frac{1}{6}\right) = g\left(\frac{1}{4}\right) = -3$.

Horizontal Line Test: A function is one-to-one if, and only if, no horizontal line intersects its graph more than once.

Ex. Show $F(x) = x^4$ is not one-to-one.

Solution 1: F(x) is not one-to-one because F(-1) = F(1) = 1

Solution 2:

Notice that any horizontal line y = a, where a > 0, will intersect the graph in more than one point. Thus, $F(x) = x^4$ is not one-to-one.

Ex. Show $h(x) = x^3$ is one-to-one.

Solution 1: We need to show that if $h(x_1) = h(x_2)$, then $x_1 = x_2$. We know: $x_1^3 = x_2^3 \implies x_1 = x_2$ so h(x) is one-to-one.

We can see from the graph of $h(x) = x^3$ that every horizontal line intersects the graph in exactly one point. This means that no horizontal line will intersect the graph in more than one point.

Ex. Show that $F(x) = \sqrt{x-1}$ is one-to-one.

Solution 1: $F(x_1) = F(x_2)$ means $\sqrt{x_1 - 1} = \sqrt{x_2 - 1}$ $\Rightarrow x_1 - 1 = x_2 - 1 \Rightarrow x_1 = x_2$ so F is one-to-one. Solution 2: $y = \sqrt{x - 1}$

Notice that no horizontal line intersects the graph in more than one point. Thus, F(x) is one-to-one.

Def. Let f be a one-to-one function with domain A and range B. We can then say that its **inverse function** f^{-1} has domain B, range A, and is defined by: $f^{-1}(y) = x$ if, and only if, y = f(x) for any $y \in B$.

Another way of looking at inverse functions is that an inverse function f^{-1} "undoes" what the original function does. Meaning if we start with any point $x \in A =$ domain of f, then we have:

$$x \xrightarrow{f} f(x) \xrightarrow{f^{-1}} f^{-1}(f(x)) = x$$

So f^{-1} brings us right back to the original value x.

Ex. Given the function f below, find the inverse function f^{-1} and describe the domain and range of f^{-1} .

X	f(x)	$f^{-1}(x)$
1	-2	$f^{-1}(-2) = 1$
3	$\frac{1}{2}$	$f^{-1}\left(\frac{1}{2}\right) = 3$
5	0	$f^{-1}(0) = 5$
7	3	$f^{-1}(3) = 7$
9	1	$f^{-1}(1) = 9$

Domain of $f^{-1}(x) = \{-2, 0, \frac{1}{2}, 1, 3\} = \text{range of } f$ Range of $f^{-1}(x) = \{1, 3, 5, 7, 9\} = \text{domain of } f$. In fact, we will always have:

Domain of
$$f^{-1}$$
 = Range of f
Range of f^{-1} = Domain of f
 $f(f^{-1}(x)) = x$
 $f^{-1}(f(x)) = x$.

Remember that we can only have inverse functions for functions that are one-toone. But if we do have a one-to-one function, then how can we find its inverse? In general, it isn't always possible to write down an explicit formula for an inverse function. However, if we have y = f(x) and we can solve this equation for x in terms of y, then we get an explicit formula for the inverse function by switching the roles of x and y.

Ex. Find the inverse function for f(x) = 3x - 2, start by solving for x.

$$y = 3x - 2$$
$$y + 2 = 3x$$
$$\frac{1}{3}y + \frac{2}{3} = x$$

Now switch the roles of *x* and *y*:

$$y = \frac{1}{3}x + \frac{2}{3}$$
$$f^{-1}(x) = \frac{1}{3}x + \frac{2}{3}$$

Ex. Find a formula for the inverse function of $y = \frac{3x+1}{1-2x}$.

First, solve for x in terms of y.

$$y = \frac{3x+1}{1-2x}$$
$$y(1-2x) = 3x+1$$
$$y-2xy = 3x+1$$
$$y-1 = 3x+2xy$$
$$y-1 = x(3+2y)$$
$$\frac{y-1}{3+2y} = x$$

Now switch *x* and *y*:

$$f^{-1}(x) = \frac{x-1}{3+2x}$$

Ex. Find the inverse function of $f(x) = x^3 - 8$.

$$y = x^{3} - 8$$
$$y + 8 = x^{3}$$
$$\sqrt[3]{y + 8} = x$$

Now switch the roles of *x* and *y*:

$$y = \sqrt[3]{x+8}$$

 $f^{-1}(x) = \sqrt[3]{x+8}.$

Ex. Using the previous example, show that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

$$f(x) = x^3 - 8$$
 $f^{-1}(x) = \sqrt[3]{x+8}$

$$f(f^{-1}(x)) = f(\sqrt[3]{x+8}) = (\sqrt[3]{x+8})^3 - 8 = x + 8 - 8 = x.$$

$$f^{-1}(f(x)) = f^{-1}(x^3 - 8) = \sqrt[3]{x^3 - 8 + 8} = \sqrt[3]{x^3} = x.$$

If we let b = f(a), then the point (a, b) is a point on the graph of y = f(x). Also, we can then say that $f^{-1}(b) = a$ so the point (b, a) is on the graph of $y = f^{-1}(x)$.

Thus, we have that the graph of f^{-1} is the reflection of the graph of y = f(x) about the line y = x.

Ex. Given the graph of $f(x) = \sqrt{x-1}$, sketch a graph of $y = f^{-1}(x)$ below.

Theorem: If f is a one-to-one, continuous function on an interval, then its inverse function, f^{-1} , is also continuous.

Theorem: If f is a one-to-one differentiable function, with inverse function f^{-1} , and $f'(f^{-1}(b)) \neq 0$, then the inverse function is differentiable at b and:

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}.$$

Ex. Let $f(x) = x^3 + 7x + 3\cos x$. Find $(f^{-1})'(3)$.

$$(f^{-1})'(3) = \frac{1}{f'(f^{-1}(3))}$$

Notice that $f(0) = 3(\cos 0) = 3$, so $f^{-1}(3) = 0$.

$$f'(x) = 3x^2 + 7 - 3\sin x$$
$$f'(f^{-1}(3)) = f'(0) = 7$$
$$(f^{-1})'(3) = \frac{1}{f'(f^{-1}(3))} = \frac{1}{7}.$$

Proof of Theorem: Let's let f(a) = b, $y = f^{-1}(x)$, and x = f(y) then $(f^{-1})'(b) = \lim_{x \to b} \frac{f^{-1}(x) - f^{-1}(b)}{x - b}$

$$= \lim_{y \to a} \frac{y - a}{f(y) - f(a)} = \lim_{y \to a} \frac{1}{\frac{f(y) - f(a)}{y - a}}$$
$$= \frac{1}{\lim_{y \to a} \frac{f(y) - f(a)}{y - a}} = \frac{1}{f'(a)}$$
$$= \frac{1}{f'(f^{-1}(b))}.$$

Ex. Let $f(x) = \sqrt{x+4}$ and b = 3.

- a) Show that f is a one-to-one function.
- b) Calculate $f^{-1}(x)$ and state the domain and range of f^{-1} .
- c) Find $(f^{-1})'(3)$ by the theorem and by using part b.

a)
$$f(x_1) = f(x_2)$$

 $\sqrt{x_1 + 4} = \sqrt{x_2 + 4}$
 $x_1 + 4 = x_2 + 4$
 $x_1 = x_2.$

So f is a one-to-one function.

b) $y = \sqrt{x+4}$, solve for x in terms of y:

$$y^{2} = x + 4$$

$$y^{2} - 4 = x$$
Now switch x and y: $f^{-1}(x) = x^{2} - 4$.
Domain of $f = \{x \in \mathbb{R} | x + 4 \ge 0\} = \{x \in \mathbb{R} | x \ge -4\}$
Range of $f = \{y \in \mathbb{R} | y \ge 0\}$
Domain of $f^{-1} =$ Range of $f = \{x \in \mathbb{R} | x \ge 0\}$
Range of $f^{-1} =$ Domain of $f = \{y \in \mathbb{R} | y \ge -4\}$
c) $(f^{-1})'(3) = \frac{1}{f'(f^{-1}(3))}$
 $f(x) = 3 \Rightarrow \sqrt{x + 4} = 3 \Rightarrow x + 4 = 9 \Rightarrow x = 5$
 $f(5) = 3 \Rightarrow f^{-1}(3) = 5$
 $f(x) = \sqrt{x + 4} = (x + 4)^{\frac{1}{2}}$
 $f'(x) = \frac{1}{2}(x + 4)^{-\frac{1}{2}}$
 $f'(5) = \frac{1}{2}(5 + 4)^{-\frac{1}{2}} = \frac{1}{2}(\frac{1}{\sqrt{9}}) = \frac{1}{6}$

$$(f^{-1})'(3) = \frac{1}{f'(f^{-1}(3))} = \frac{1}{f'(5)} = \frac{1}{\frac{1}{6}} = 6.$$

Now using part b:

$$f^{-1}(x) = x^2 - 4$$

(f^{-1})'(x) = 2x
(f^{-1})'(3) = 6.