The Formal Definition of a Limit

Recall that $\lim_{x \to a} f(x) = L$ means that f(x) can be forced to be arbitrarily close to L for all x sufficiently close to a (but not including x = a).

This means that given any interval around the number L, let's say

 $(L - \epsilon, L + \epsilon)$, we can always find an interval around the point x = a, let's say $(a - \delta, a + \delta)$, so that for any x (other than x = a), where $a - \delta < x < a + \delta$, f(x) will satisfy $L - \epsilon < f(x) < L + \epsilon$.

In general, the number δ will depend on the number ϵ .

So in order to prove that $\lim_{x \to a} f(x) = L$, we will need to show that given ANY $\epsilon > 0$ we can find a $\delta > 0$ (where δ is a function of ϵ) so that if

 $a - \delta < x < a + \delta$, with $x \neq a$, then $L - \epsilon < f(x) < L + \epsilon$.

Notice that $a - \delta < x < a + \delta$, with $x \neq a$ is the same as:

 $0 < |x - a| < \delta$, and

 $L - \epsilon < f(x) < L + \epsilon$ is the same as:

$$|f(x) - L| < \epsilon.$$

Thus one often sees the definition of $\lim_{x \to a} f(x) = L$ as

 $\lim_{x \to a} f(x) = L \text{ means given any } \epsilon > 0 \text{ there exists (or we can find) a } \delta > 0 \text{ such that } |f(x) - L| < \epsilon \text{ whenever } 0 < |x - a| < \delta.$

Ex. Suppose |f(x) - 5| < 3 for all x where 1 < x < 6. Find all $\delta > 0$ such that |f(x) - 5| < 3 when $0 < |x - 3| < \delta$.

Start by drawing a picture.

 $\begin{array}{ll} 0 < |x - 3| < \delta \implies & 3 - \delta < x < 3 + \delta. \\ \text{We know } |f(x) - 5| < 3 \text{ for all } x \text{ where } 1 < x < 6. \\ \text{So,} & 3 - \delta \ge 1 \text{ and } 3 + \delta \le 6 \\ \text{or:} & 2 \ge \delta \text{ and } \delta \le 3 \implies \delta \le 2. \end{array}$

Ex. For the function f(x) whose graph is below, we have $\lim_{x\to 2} f(x) = 4$. Suppose that If $0 < |x - 2| < \delta$ then |f(x) - 4| < 1. Find the largest possible δ .

Notice that 3 < f(x) < 5 when 1 < x < 4. So |f(x) - 4| < 1 when 1 < x < 4. $0 < |x - 2| < \delta \implies 2 - \delta < x < 2 + \delta$. So $2 - \delta \ge 1$ and $2 + \delta \le 4$ or $1 \ge \delta$ and $\delta \le 2 \implies \delta \le 1$. Ex. Suppose f(x) = 2x - 1 if $x \neq 2$

=

1 *if*
$$x = 2$$
.

Prove that $\lim_{x \to 2} f(x) = 3$.

We must show that given any $\epsilon > 0$ there exists (or we can find) a $\delta > 0$ such that $|f(x) - 3| < \epsilon$ whenever $0 < |x - 2| < \delta$.

Let's start by drawing a picture when $\epsilon = 1$.

Notice that if $\epsilon = 1$, we need to find a δ such that if $2 - \delta < x < 2 + \delta$, $x \neq 2$, then f(x) satisfies $L - \epsilon < f(x) < L + \epsilon$ or in this case,

3 - 1 < f(x) < 3 + 1 i.e., 2 < f(x) < 4.

Since we don't care what happens to f at x = 2, this inequality is the same as

$$2 < 2x - 1 < 4$$
.

Let's solve this inequality for x.

$$3 < 2x < 5$$

$$\frac{3}{2} < x < \frac{5}{2}.$$

So if $\frac{3}{2} < x < \frac{5}{2}$ then $2 < f(x) < 4$ or $|f(x) - 3| < \epsilon = 1.$

But what δ forces $\frac{3}{2} < x < \frac{5}{2}$?

If we solve this inequality for x - 2 instead of x we will see the answer.

$$\frac{3}{2} - 2 < x - 2 < \frac{5}{2} - 2 \text{ or } -\frac{1}{2} < x - 2 < \frac{1}{2}.$$

So if $\epsilon = 1$ then $\delta = \frac{1}{2}$ will force $|f(x) - 3| < \epsilon = 1$ to be true whenever $0 < |x - 2| < \delta = \frac{1}{2}.$

Now we need to find a δ such that if $2 - \delta < x < 2 + \delta$, $x \neq 2$ then f(x) satisfies $L - \epsilon < f(x) < L + \epsilon$ or in this case,

$$3 - \frac{1}{2} < f(x) < 3 + \frac{1}{2}$$
$$\frac{5}{2} < f(x) < \frac{7}{2}.$$

i.e.,

now let's solve the inequality $\frac{5}{2} < 2x - 1 < \frac{7}{2}$ for x - 2:

$$\frac{5}{2} < 2x - 1 < \frac{7}{2}$$
$$\frac{7}{2} < 2x < \frac{9}{2}$$
$$\frac{7}{4} < x < \frac{9}{4}$$
$$\frac{7}{4} - 2 < x - 2 < \frac{9}{4} - 2$$
$$-\frac{1}{4} < x - 2 < \frac{1}{4}.$$

So if $\epsilon = \frac{1}{2}$ then $\delta = \frac{1}{4}$ will ensure that $|f(x) - 3| < \epsilon = \frac{1}{2}$ to be true whenever $0 < |x - 2| < \delta = \frac{1}{4}$.

That' still not good enough. To prove $\lim_{x\to 2} f(x) = 3$ we must be able to find a δ for ANY $\epsilon > 0$ no matter how small it is.

To find a δ for ANY $\epsilon > 0$ we need to go through the same procedure, but instead of a concrete ϵ (like 1 or $\frac{1}{2}$), we solve our inequalities for a general ϵ .

So we need to find a δ such that if $2 - \delta < x < 2 + \delta$, $x \neq 2$

then f(x) satisfies $L - \epsilon < f(x) < L + \epsilon$ or in this case,

$$3 - \epsilon < f(x) < 3 + \epsilon.$$

So let's solve $3 - \epsilon < 2x - 1 < 3 + \epsilon$ for x - 2 just as we did before.

$$3 - \epsilon < 2x - 1 < 3 + \epsilon$$

$$4 - \epsilon < 2x < 4 + \epsilon$$

$$\frac{4 - \epsilon}{2} < x < \frac{4 + \epsilon}{2}$$

$$2 - \frac{\epsilon}{2} < x < 2 + \frac{\epsilon}{2}$$

$$-\frac{\epsilon}{2} < x - 2 < \frac{\epsilon}{2}.$$
So if $\delta = \frac{\epsilon}{2}$ then $|f(x) - 3| < \epsilon$ whenever $0 < |x - 2| < \delta$.

Let's show that this δ works.

If
$$\delta = \frac{\epsilon}{2}$$
 then since $|x - 2| < \delta = \frac{\epsilon}{2}$
 $2|x - 2| < \epsilon$
 $|2x - 4| < \epsilon$
 $|(2x - 1) - 3| < \epsilon$
 $|f(x) - 3| < \epsilon$, since $f(x) = 2x - 1$ when $x \neq 2$.
Hence $\lim_{x \to 2} f(x) = 3$.

So the strategy to prove a limit is to start with the ϵ statement and work the inequality until you can get the δ inequality to pop out.

Notice that this example would have been essentially the same if we were trying to prove the $\lim_{x \to 2} f(x) = 3$ for f(x) = 2x - 1 or $f(x) = \frac{4x^2 - 1}{2x + 1}$; $x \neq -\frac{1}{2}$.