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lim
𝑥→3

𝑓(𝑥) = 𝐷𝑁𝐸 

                                                The Formal Definition of a Limit  

 

Recall that lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 means that 𝑓(𝑥) can be forced to be arbitrarily close to 𝐿 

for all 𝑥 sufficiently close to 𝑎 (but not including 𝑥 = 𝑎). 

 

This means that given any interval around the number 𝐿, let’s say 

 (𝐿 − 𝜖, 𝐿 + 𝜖), we can always find an interval around the point 𝑥 = 𝑎, let’s say        

    (𝑎 − 𝛿, 𝑎 + 𝛿), so that for any 𝑥 (other than 𝑥 = 𝑎), where 

     𝑎 − 𝛿 < 𝑥 < 𝑎 + 𝛿,  𝑓(𝑥) will satisfy  𝐿 − 𝜖 < 𝑓(𝑥) < 𝐿 + 𝜖.   

     In general, the number 𝛿 will depend on the number 𝜖. 

 

 

 

 

 

 

 

 

 

 

 

  

 𝑎 − 𝛿            𝑎               𝑎 + 𝛿 

𝐿 − 𝜖 

𝐿 

𝐿 + 𝜖 

𝑦 = 𝑓(𝑥) 
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So in order to prove that lim
𝑥→𝑎

𝑓(𝑥) = 𝐿, we will need to show that given ANY 𝜖 > 0 

we can find a 𝛿 > 0 (where 𝛿 is a function of 𝜖) so that if  

    𝑎 − 𝛿 < 𝑥 < 𝑎 + 𝛿, with 𝑥 ≠ 𝑎, then  𝐿 − 𝜖 < 𝑓(𝑥) < 𝐿 + 𝜖. 

 

Notice that 𝑎 − 𝛿 < 𝑥 < 𝑎 + 𝛿, with 𝑥 ≠ 𝑎 is the same as:  

                              0 < |𝑥 − 𝑎| < 𝛿,  and  

    𝐿 − 𝜖 < 𝑓(𝑥) < 𝐿 + 𝜖 is the same as:   

                               |𝑓(𝑥) − 𝐿| < 𝜖. 

 

 

Thus one often sees the definition of lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 as 

     𝐥𝐢𝐦
      𝒙→𝒂

𝒇(𝒙) = 𝑳 means given any 𝜖 > 0 there exists (or we can find) a 𝛿 > 0 such  

that   |𝑓(𝑥) − 𝐿| < 𝜖  whenever 0 < |𝑥 − 𝑎| < 𝛿. 
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Ex.  Suppose |𝑓(𝑥) − 5| < 3  for all 𝑥 where 1 < 𝑥 < 6.  Find all 𝛿 > 0 such that 

|𝑓(𝑥) − 5| < 3  when 0 < |𝑥 − 3| < 𝛿. 

 

Start by drawing a picture.  

 

 

       0 < |𝑥 − 3| < 𝛿 ⟹    3 − 𝛿 < 𝑥 < 3 + 𝛿. 

We know |𝑓(𝑥) − 5| < 3  for all 𝑥 where 1 < 𝑥 < 6.  

So,         3 − 𝛿 ≥ 1    and    3 + 𝛿 ≤ 6   

or:                  2 ≥ 𝛿    and            𝛿 ≤ 3           ⟹       𝛿 ≤ 2. 

 

 

 

 

 

 

𝑦 = 𝑓(𝑥) 
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Ex.  For the function 𝑓(𝑥) whose graph is below, we have lim
𝑥→2

𝑓(𝑥) = 4.  Suppose 

that If 0 < |𝑥 − 2| < 𝛿  then |𝑓(𝑥) − 4| < 1.  Find the largest possible 𝛿. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that 3 < 𝑓(𝑥) < 5  when 1 < 𝑥 < 4.  

So |𝑓(𝑥) − 4| < 1 when 1 < 𝑥 < 4. 

       0 < |𝑥 − 2| < 𝛿  ⟹    2 − 𝛿 < 𝑥 < 2 + 𝛿. 

So  2 − 𝛿 ≥ 1 and 2 + 𝛿 ≤ 4  or 

         1 ≥ 𝛿   and  𝛿 ≤ 2  ⟹  𝛿 ≤ 1. 
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𝑦 = 𝑓(𝑥) 
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         𝑦 = 𝑓(𝑥) 

Ex.  Suppose   𝑓(𝑥) = 2𝑥 − 1      𝑖𝑓 𝑥 ≠ 2 

                                      = 1                𝑖𝑓 𝑥 = 2. 

Prove that lim
𝑥→2

𝑓(𝑥) = 3. 

 

 

 

 

 

We must show that given any 𝜖 > 0 there exists (or we can find) a 𝛿 > 0 such that    

        |𝑓(𝑥) − 3| < 𝜖  whenever 0 < |𝑥 − 2| < 𝛿. 

 

 

 

𝑦 = 𝑓(𝑥) 
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Let’s start by drawing a picture when 𝜖 = 1. 

 

 

Notice that if 𝜖 = 1, we need to find a 𝛿 such that if 2 − 𝛿 < 𝑥 < 2 + 𝛿,   𝑥 ≠ 2, 

then 𝑓(𝑥) satisfies 𝐿 − 𝜖 < 𝑓(𝑥) < 𝐿 + 𝜖   or in this case, 

           3 − 1 < 𝑓(𝑥) < 3 + 1       i.e.,       2 < 𝑓(𝑥) < 4. 

Since we don’t care what happens to 𝑓 at 𝑥 = 2, this inequality is the same as 

      2 < 2𝑥 − 1 < 4 .   

Let’s solve this inequality for 𝑥. 

      3 < 2𝑥 < 5  

        
3

2
< 𝑥 <

5

2
 .   

So if 
3

2
< 𝑥 <

5

2
 then 2 < 𝑓(𝑥) < 4  or  |𝑓(𝑥) − 3| < 𝜖 = 1. 
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But what 𝛿 forces 
3

2
< 𝑥 <

5

2
 ? 

If we solve this inequality for 𝑥 − 2 instead of 𝑥 we will see the answer. 

                
3

2
− 2 < 𝑥 − 2 <

5

2
− 2   or     −

1

2
< 𝑥 − 2 <

1

2
 . 

So if 𝜖 = 1 then 𝛿 =
1

2
 will force |𝑓(𝑥) − 3| < 𝜖 = 1  to be true  

whenever 0 < |𝑥 − 2| < 𝛿 =
1

2
 . 

 

But that only works if 𝜖 = 1.  What if  𝜖 =
1

2
 ? 
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Now we need to find a 𝛿 such that if  2 − 𝛿 < 𝑥 < 2 + 𝛿,   𝑥 ≠ 2 

then 𝑓(𝑥) satisfies 𝐿 − 𝜖 < 𝑓(𝑥) < 𝐿 + 𝜖  or in this case, 

                                  3 −
1

2
< 𝑓(𝑥) < 3 +

1

2
 

i.e.,                                
5

2
< 𝑓(𝑥) <

7

2
 . 

 

now let’s solve the inequality 
5

2
< 2𝑥 − 1 <

7

2
  for 𝑥 − 2: 

                
5

2
< 2𝑥 − 1 <

7

2
  

                   
7

2
< 2𝑥 <

9

2
  

                     
7

4
< 𝑥 <

9

4
  

           
7

4
− 2 < 𝑥 − 2 <

9

4
− 2   

               −
1

4
< 𝑥 − 2 <

1

4
 .  

 

So if 𝜖 =
1

2
  then 𝛿 =

1

4
 will ensure that |𝑓(𝑥) − 3| < 𝜖 =

1

2
  to be true  

whenever 0 < |𝑥 − 2| < 𝛿 =
1

4
 . 

 

 

 

 

That’ still not good enough. To prove lim
𝑥→2

𝑓(𝑥) = 3 we must be able to find a 𝛿 for 

ANY 𝜖 > 0 no matter how small it is. 
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To find a 𝛿 for ANY 𝜖 > 0  we need to go through the same procedure, but instead 

of a concrete 𝜖 (like 1 or 
1

2
), we solve our inequalities for a general 𝜖. 

 

So we need to find a 𝛿 such that if  2 − 𝛿 < 𝑥 < 2 + 𝛿,   𝑥 ≠ 2 

then 𝑓(𝑥) satisfies 𝐿 − 𝜖 < 𝑓(𝑥) < 𝐿 + 𝜖  or in this case,  

                                    3 − 𝜖 < 𝑓(𝑥) < 3 + 𝜖. 

 

 

 

 

 

 

 

3 + 𝜖 

3 − 𝜖 
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So let’s solve 3 − 𝜖 < 2𝑥 − 1 < 3 + 𝜖  for 𝑥 − 2 just as we did before. 

 

               3 − 𝜖 < 2𝑥 − 1 < 3 + 𝜖   

                  4 − 𝜖 < 2𝑥 < 4 + 𝜖   

                       
4−𝜖

2
< 𝑥 <

4+𝜖

2
   

                   2 −
𝜖

2
< 𝑥 < 2 +

𝜖

2
   

                  −
𝜖

2
< 𝑥 − 2 <

𝜖

2
 .   

So if 𝛿 =
𝜖

2
  then |𝑓(𝑥) − 3| < 𝜖 whenever 0 < |𝑥 − 2| < 𝛿.  

 

Let’s show that this 𝛿 works.  

 

If 𝛿 =
𝜖

2
  then since |𝑥 − 2| < 𝛿 =

𝜖

2
 

                         2|𝑥 − 2| < 𝜖  

                         |2𝑥 − 4| < 𝜖  

              |(2𝑥 − 1) − 3| < 𝜖  

                      |𝑓(𝑥) − 3| < 𝜖 ,   since 𝑓(𝑥) = 2𝑥 − 1  when 𝑥 ≠ 2. 

Hence lim
𝑥→2

𝑓(𝑥) = 3. 

 

So the strategy to prove a limit is to start with the 𝜖 statement and work the 

inequality until you can get the 𝛿 inequality to pop out. 

Notice that this example would have been essentially the same if we were trying to 

prove the lim
𝑥→2

𝑓(𝑥) = 3 for 𝑓(𝑥) = 2𝑥 − 1 or 𝑓(𝑥) = 
4𝑥2−1

2𝑥+1
;   𝑥 ≠ −

1

2
 . 


