## Continuity

Graphically, a function f(x) is continuous at x = a if you don't need to lift your pencil off the paper as you draw the graph of f(x) around x = a.



Def. A function f(x) is **continuous** at x = a if  $\lim_{x \to a} f(x) = f(a)$ .

We need 3 things to occur for a function f(x) be continuous at x = a:

- 1. f(x) is defined at x = a, i.e., a is in the domain of f
- 2.  $\lim_{x \to a} f(x)$  exists (and is finite)
- $3. \lim_{x \to a} f(x) = f(a).$

f(x) is said to be **discontinuous** at x = a if f is not continuous at x = a.

Ex. Points of discontinuity:

1. a.  $f(x) = \frac{x^2 - 9}{x - 3}$ ;  $x \neq 3$ ; has a discontinuity at x = 3 because f(x) is not defined there.

$$f(x) = \frac{x^2 - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} = x + 3; \quad x \neq 3.$$



b.  $f(x) = \frac{1}{x}$ ;  $x \neq 0$ ; has a discontinuity at x = 0 because f(x) is not defined there (and because the  $\lim_{x \to 0} f(x)$  doesn't exist).





Has a discontinuity at x = 3 because  $\lim_{x \to 3} f(x)$  doesn't exist. This is called a **jump discontinuity**.

3. 
$$f(x) = \frac{x^2 - 9}{x - 3}$$
  $x \neq 3$   
= 1  $x = 3$ .

Has a discontinuity at x = 3. The  $\lim_{x \to 3} f(x)$ exists (what is it?) but it doesn't equal f(3). This type of discontinuity is called a **removable discontinuity** because if we just redefine the function at f(3) to be equal to  $\lim_{x \to 3} f(x)$  the function would be continuous at x = 3.



Theorem: If f and g are continuous at x = a, and c is a real number, then the following functions are continuous at x = a.

- 1. f + g
- 2. f g
- 3. *cf*
- 4. *fg*
- 5. f/g, provided  $g(a) \neq 0$
- 6.  $(f(x))^n$ , where *n* is a positive integer.

These all follow from our limit rules.

For example: if 
$$\lim_{x \to a} f(x) = f(a)$$
, and  $\lim_{x \to a} g(x) = g(a)$ , then  

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$= f(a) + g(a).$$

We also have as a result of our limit rules that:

- 1. All polynomials are continuous for all values of *x*
- 2. All rational functions are continuous for all values of *x* in their domain.

Ex. For what values of x is  $f(x) = \frac{2x-5}{x^2-2x-8}$  continuous?

 $f(x) = \frac{2x-5}{x^2-2x-8} = \frac{2x-5}{(x-4)(x+2)}; \text{ so only } x = 4, -2 \text{ are not in the domain of } f.$ 

Thus, since f(x) is a rational function, it is continuous for all x such that  $x \neq 4, -2$ .

In other words, f(x) is discontinuous only at x = 4, -2.

Theorem (Continuity of Composite functions at x = a):

If g is continuous at x = a and f is continuous at g(a), then the composite function f(g(x)) is continuous at x = a.

Limits of Composite Functions:

If  $\lim_{x \to a} g(x) = L$  and f is continuous at L, then

 $\lim_{x\to a} f(g(x)) = f(\lim_{x\to a} g(x)).$ 

Note: if g(x) is continuous at x = a then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)).$$

Ex. Evaluate

a. 
$$\lim_{x \to -2} \sqrt{2x^2 + 3}$$
  
b. 
$$\lim_{x \to -3} \sin\left(\frac{x^2 - 9}{x + 3}\right).$$

We will see later that both  $\sqrt{x}$  (for x > 0) and sinx (for all x) are continuous (in fact all 6 trig functions are continuous in their domains).

a. We can think of 
$$\sqrt{2x^2 + 3}$$
 as a composition of  $f(x) = \sqrt{x}$  and  $g(x) = 2x^2 + 3;$   $f(g(x)) = \sqrt{2x^2 + 3}.$  Thus  

$$\lim_{x \to -2} \sqrt{2x^2 + 3} = \sqrt{\lim_{x \to -2} (2x^2 + 3)} = \sqrt{(8 + 3)} = \sqrt{11}.$$

b. 
$$\lim_{x \to -3} \sin\left(\frac{x^2 - 9}{x + 3}\right) = \sin\left(\lim_{x \to -3} \frac{x^2 - 9}{x + 3}\right)$$
$$= \sin\left(\lim_{x \to -3} \frac{(x + 3)(x - 3)}{x + 3}\right)$$
$$= \sin\left(\lim_{x \to -3} (x - 3)\right) = \sin(-6).$$

Notice that the inner function,  $g(x) = \frac{x^2-9}{x+3}$ , is not continuous at x = -3, but it does have a limit at x = -3, which is all we need to use the previous theorem on limits of composite functions.

Def. A function is continuous from the right at x = a if  $\lim_{x \to a^+} f(x) = f(a)$  and continuous from the left at x = a if  $\lim_{x \to a^-} f(x) = f(a)$ .

Notice that f is continuous at x = a if and only if it's continuous from the right and continuous from the left at x = a.

Def. A function f is **continuous on an interval** I if it is continuous at all points of I. If I contains its endpoints, continuity on I means continuous from the right or left at the relevant endpoints.

Ex. Determine the intervals of continuity for

 $f(x) = x + 1 \quad if \ x > 3$  $= x - 2 \quad if \ x \le 3.$ 

Start by sketching the graph of f.



If x < 3 then f(x) = x - 2 and for x = a < 3,  $\lim_{x \to a} f(x) = f(a)$ 

(*f* is a polynomial for x < 3 and a different polynomial for x > 3.) If x > 3 then f(x) = x + 1 and for x = a > 3,  $\lim_{x \to a} f(x) = f(a)$ . The only question is at x = 3, where f(3) = 1. Notice that:  $\lim_{x \to 3^{-}} f(x) = 1$  and  $\lim_{x \to 3^{+}} f(x) = 4$  so  $\lim_{x \to 3} f(x) = DNE$ . So f is continuous on:  $(-\infty, 3) \cup (3, \infty)$ .

## **Continuity of Functions involving Roots**

Recall that Limit Law #7 said:

$$\lim_{x \to a} (f(x))^{\frac{n}{m}} = (\lim_{x \to a} f(x))^{\frac{n}{m}}; \text{ provided } f(x) > 0,$$

for x near a, if m is even and n/m is reduced to lowest form and m, n > 0.

So if 
$$f(x)$$
 is a continuous function (i.e.  $\lim_{x \to a} f(x) = f(a)$  ) we have:  

$$\lim_{x \to a} (f(x))^{\frac{n}{m}} = (\lim_{x \to a} f(x))^{\frac{n}{m}} = (f(a))^{\frac{n}{m}}.$$

In other words, assume m and n are positive integers with no common factors. If m is odd then  $(f(x))^{\frac{n}{m}}$  is continuous at all points at which f is continuous. If m is even, then  $(f(x))^{\frac{n}{m}}$  is continuous at all point x = a at which f is continuous and f(a) > 0.

Ex. For what values of x are the following functions continuous?

a. 
$$h(x) = \sqrt{25 - x^2}$$
  
b.  $g(x) = (x^2 + 3x - 6)^{\frac{4}{7}}$ 

a. 
$$h(x) = \sqrt{25 - x^2} = (25 - x^2)^{\frac{1}{2}}$$
, in this case  $h(x) = (f(x))^{\frac{1}{2}}$ ,  
where  $f(x) = 25 - x^2$ .

Since m = 2 is even, h(x) will be continuous when f(x) > 0, i.e., -5 < x < 5.

Now we need to check continuity at the endpoints, x = -5, 5.

$$\lim_{x \to -5^+} \sqrt{25 - x^2} = 0 = h(-5)$$
$$\lim_{x \to 5^-} \sqrt{25 - x^2} = 0 = h(5).$$
So  $h(x) = \sqrt{25 - x^2}$  is continuous on [-5,5].

b. 
$$g(x) = (x^2 + 3x - 6)^{\frac{4}{7}}$$
;  $m = 7$  is odd so  $g(x)$  is continuous everywhere since  $f(x) = x^2 + 3x - 6$  is continuous everywhere. So  $g(x)$  is cont. on  $(-\infty, \infty)$ .

Earlier we used the squeeze theorem to show that:

 $\lim_{h \to 0} \sin(h) = 0 \quad \text{and} \quad \lim_{h \to 0} \cos(h) = 1.$ 

Now we want to show that sinx and cosx are continuous functions for any x = a.

So we must show:

$$\lim_{x \to a} \sin(x) = \sin(a) \quad \text{and} \quad \lim_{x \to a} \cos(x) = \cos(a).$$

To show  $\lim_{x \to a} \sin(x) = \sin(a)$  remember that  $\sin(a + h) = (sina)(\cos(h)) + (\sin(h))(\cos(a)).$ If we let x = a + h then  $\lim_{x \to a} \sin(x) = \lim_{h \to 0} \sin(a + h)$   $= \lim_{h \to 0} [(sina)(\cos(h)) + (\sin(h))(\cos(a))]$   $= \lim_{h \to 0} (\sin(a))(\cos(h)) + \lim_{h \to 0} (\sin(h))(\cos(a))$  $= \sin(a) + 0 = \sin(a).$ 

To show that cosx is continuous for any x = a we do the same trick, but we use

$$\cos(a+h) = (\cos(a))(\cos(h)) - (\sin(a))(\sin(h)).$$

Using the fact that if f and g are continuous at x = a, so is f/g as long as  $g(a) \neq 0$ , we can conclude:

## The 6 trig functions are continuous at all points of their domains.

Ex. Evaluate 
$$\lim_{x \to \frac{\pi}{2}} \sqrt{\frac{4sin^2x-4}{sinx-1}}$$
.

$$\lim_{x \to \frac{\pi}{2}} \sqrt{\frac{4\sin^2 x - 4}{\sin x - 1}} = \lim_{x \to \frac{\pi}{2}} \sqrt{\frac{4(\sin^2 x - 1)}{\sin x - 1}}$$
$$= \lim_{x \to \frac{\pi}{2}} 2\sqrt{\frac{(\sin x - 1)(\sin x + 1)}{\sin x - 1}}$$
$$= \lim_{x \to \frac{\pi}{2}} 2\sqrt{\sin x + 1} = 2\sqrt{1 + 1} = 2\sqrt{2}$$

## The Intermediate Value Theorem

Frequently, we want to know if there is a solution to the problem f(x) = K. That is, is there a real number  $x_0$  such that  $f(x_0) = K$ ?

The Intermediate Value Theorem is a common way to show that an equation has a solution (without necessarily finding it).

Intermediate Value Theorem: Suppose f is continuous on the interval [a, b] and K is a number strictly between f(a) and f(b). Then there exists at least one number c in (a, b) such that f(c) = K.



Ex. Show that the equation sin x + x = 1 has at least one solution on  $(0, \frac{\pi}{2})$ .

Let 
$$f(x) = sinx + x - 1$$
.  
 $f(x)$  is a continuous function on  $[0, \frac{\pi}{2}]$  and  
 $f(0) = -1$ ,  $f(\frac{\pi}{2}) = sin\frac{\pi}{2} + \frac{\pi}{2} - 1 = \frac{\pi}{2}$ .  
Since  $f(0) < 0$  and  $f(\frac{\pi}{2}) > 0$ ,  
by the intermediate value theorem there must be at least one point  $c$ ,  
where  $0 < c < \frac{\pi}{2}$  such that  $f(c) = 0$ . That  $c$  is a solution of

sinx + x = 1.

Ex. Show that  $\sqrt[3]{x+2} - x = 3$  has at least one solution in [-10,6].

Let 
$$f(x) = \sqrt[3]{x+2} - x - 3$$
.

Notice that f(x) is continuous everywhere because  $g(x) = \sqrt[3]{x+2}$  and h(x) = -x - 3 are both continuous everywhere. So, in particular, f(x) is continuous on [-10,6].

$$f(-10) = \sqrt[3]{-8} + 10 - 3 = -2 + 10 - 3 = 5 > 0$$
  
$$f(6) = \sqrt[3]{8} - 6 - 3 = 2 - 6 - 3 = -7 < 0.$$

So by the intermediate value theorem there must be at least one point c, where -10 < c < 6 such that f(c) = 0. That c is a solution of  $\sqrt[3]{x+2} - x = 3$ .