Continuity

Graphically, a function $f(x)$ is continuous at $x = a$ if you don't need to lift your pencil off the paper as you draw the graph of $f(x)$ around $x = a$.

Def. A function $f(x)$ is **continuous** at $x = a$ if lim $x \rightarrow a$ $f(x) = f(a).$

We need 3 things to occur for a function $f(x)$ be continuous at $x = a$:

- 1. $f(x)$ is defined at $x = a$, i.e., a is in the domain of f
- 2. lim $x \rightarrow a$ $f(x)$ exists (and is finite)
- 3. lim $x \rightarrow a$ $f(x) = f(a).$

 $f(x)$ is said to be **discontinuous** at $x = a$ if f is not continuous at $x = a$.

Ex. Points of discontinuity:

1. a. $f(x) = \frac{x^2-9}{x-2}$ $\frac{x-9}{x-3}$; $x \neq 3$; has a discontinuity at $x = 3$ because $f(x)$ is not defined there.

$$
f(x) = \frac{x^2 - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} = x + 3; \quad x \neq 3.
$$

b. $f(x) = \frac{1}{x}$ $\frac{1}{x}$; $x \neq 0$; has a discontinuity at $x = 0$ because $f(x)$ is not defined there (and because the \lim $f(x)$ doesn't exist).

Has a discontinuity at $x=3$ because $\lim_{\Delta x \to 0}$ $x\rightarrow 3$ $f(x)$ doesn't exist. This is called a **jump discontinuity**.

3.
$$
f(x) = \frac{x^2-9}{x-3}
$$
 $x \neq 3$
= 1 $x = 3$.

Has a discontinuity at $x = 3$. The $\lim_{x \to 0}$ $x\rightarrow 3$ $f(x)$ exists (what is it?) but it doesn't equal $f(3)$. This type of discontinuity is called a **removable discontinuity** because if we just redefine the function at $f(3)$ to be equal to \lim_{Ω} $x\rightarrow 3$ $f(x)$ the function would be continuous at $x = 3$.

Theorem: If f and g are continuous at $x = a$, and c is a real number, then the following functions are continuous at $x = a$.

- 1. $f + g$
- 2. $f g$
- 3.
- 4. fg
- 5. f/g , provided $g(a) \neq 0$
- 6. $(f(x))^{n}$, where n is a positive integer.

These all follow from our limit rules.

For example: if
$$
\lim_{x \to a} f(x) = f(a)
$$
, and $\lim_{x \to a} g(x) = g(a)$, then
\n
$$
\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)
$$
\n
$$
= f(a) + g(a).
$$

We also have as a result of our limit rules that:

- 1. All polynomials are continuous for all values of $$
- 2. All rational functions are continuous for all values of χ in their domain.

Ex. For what values of x is $f(x) = \frac{2x-5}{x^2-2x}$ $\frac{2\pi}{x^2-2x-8}$ continuous?

 $f(x) = \frac{2x-5}{x^2-2x}$ $\frac{2x-5}{x^2-2x-8} = \frac{2x-5}{(x-4)(x-5)}$ $\frac{2x-3}{(x-4)(x+2)}$; so only $x=4,-2$ are not in the domain of f .

Thus, since $f(x)$ is a rational function, it is continuous for all x such that $x \neq 4, -2.$

In other words, $f(x)$ is discontinuous only at $x = 4, -2$.

Theorem (Continuity of Composite functions at $x = a$):

If g is continuous at $x = a$ and f is continuous at $g(a)$, then the composite function $f(g(x))$ is continuous at $x = a$.

Limits of Composite Functions:

If lim $x \rightarrow a$ $g(x) = L$ and f is continuous at L , then lim $x \rightarrow a$ $f(g(x)) = f$ (lim $x \rightarrow a$ $g(x)$.

Note: if $g(x)$ is continuous at $x = a$ then

$$
\lim_{x \to a} f\big(g(x)\big) = f\big(\lim_{x \to a} g(x)\big).
$$

Ex. Evaluate

a.
$$
\lim_{x \to -2} \sqrt{2x^2 + 3}
$$

b.
$$
\lim_{x \to -3} \sin \left(\frac{x^2 - 9}{x + 3} \right).
$$

We will see later that both \sqrt{x} (for $x > 0$) and $\sin x$ (for all x) are continuous (in fact all 6 trig functions are continuous in their domains).

a. We can think of
$$
\sqrt{2x^2 + 3}
$$
 as a composition of $f(x) = \sqrt{x}$ and
\n $g(x) = 2x^2 + 3$; $f(g(x)) = \sqrt{2x^2 + 3}$. Thus
\n
$$
\lim_{x \to -2} \sqrt{2x^2 + 3} = \sqrt{\lim_{x \to -2} (2x^2 + 3)} = \sqrt{(8 + 3)} = \sqrt{11}.
$$

b.
$$
\lim_{x \to -3} \sin\left(\frac{x^2 - 9}{x + 3}\right) = \sin\left(\lim_{x \to -3} \frac{x^2 - 9}{x + 3}\right)
$$

=
$$
\sin\left(\lim_{x \to -3} \frac{(x + 3)(x - 3)}{x + 3}\right)
$$

=
$$
\sin\left(\lim_{x \to -3} (x - 3)\right) = \sin(-6).
$$

Notice that the inner function, $g(x) = \frac{x^2-9}{x+2}$ $\frac{x-3}{x+3}$, is not continuous at $x = -3$, but it does have a limit at $x = -3$, which is all we need to use the previous theorem on limits of composite functions.

Def. A function is **continuous from the right at** $x = a$ if $\lim_{h \to 0}$ $x \rightarrow a^+$ $f(x) = f(a)$ and ${\sf continuous}$ from the left at $x = a$ if $\lim_{h \to 0} a$ $x \rightarrow a^$ $f(x) = f(a).$

Notice that f is continuous at $x = a$ if and only if it's continuous from the right and continuous from the left at $x = a$.

Def. A function f is **continuous on an interval** I if it is continuous at all points of *I*. If I contains its endpoints, continuity on I means continuous from the right or left at the relevant endpoints.

Ex. Determine the intervals of continuity for

 $f(x) = x + 1$ if $x > 3$ $= x - 2$ if $x < 3$.

Start by sketching the graph of f .

If $x < 3$ then $f(x) = x - 2$ and for $x = a < 3$, lim $x \rightarrow a$ $f(x) = f(a)$

(*f* is a polynomial for $x < 3$ and a different polynomial for $x > 3$.) If $x > 3$ then $f(x) = x + 1$ and for $x = a > 3$, lim $x \rightarrow a$ $f(x) = f(a).$ The only question is at $x = 3$, where $f(3) = 1$.

Notice that: lim $\overline{x\rightarrow}3^{-}$ $f(x) = 1$ and \lim $x \rightarrow 3^+$ $f(x) = 4$ so lim $x\rightarrow 3$ $f(x) = DNE.$

So f is continuous on: $(-\infty, 3) \cup (3, \infty)$.

Continuity of Functions involving Roots

Recall that Limit Law #7 said:

$$
\lim_{x \to a} (f(x))^{\frac{n}{m}} = (\lim_{x \to a} f(x))^{\frac{n}{m}}; \text{ provided } f(x) > 0,
$$

for x near a, if m is even and n/m is reduced to lowest form and $m, n > 0$.

So if
$$
f(x)
$$
 is a continuous function (i.e. $\lim_{x \to a} f(x) = f(a)$) we have:
\n
$$
\lim_{x \to a} (f(x))_m^{\frac{n}{m}} = (\lim_{x \to a} f(x))_m^{\frac{n}{m}} = (f(a))_m^{\frac{n}{m}}.
$$

In other words, assume m and n are positive integers with no common factors. If m is odd then $(f(x))$ \boldsymbol{n} $\overline{^m}$ is continuous at all points at which f is continuous. If m is even, then $(f(x))$ \boldsymbol{n} \overline{m} is continuous at all point $x=a$ at which f is continuous and $f(a) > 0$.

Ex. For what values of x are the following functions continuous?

a.
$$
h(x) = \sqrt{25 - x^2}
$$

b. $g(x) = (x^2 + 3x - 6)^{\frac{4}{7}}$

a.
$$
h(x) = \sqrt{25 - x^2} = (25 - x^2)^{\frac{1}{2}}
$$
, in this case $h(x) = (f(x))^{\frac{1}{2}}$,
where $f(x) = 25 - x^2$.

Since $m = 2$ is even, $h(x)$ will be continuous when $f(x) > 0$, i.e., $-5 < x < 5$.

Now we need to check continuity at the endpoints, $x = -5, 5$.

$$
\lim_{x \to -5^{+}} \sqrt{25 - x^{2}} = 0 = h(-5)
$$

$$
\lim_{x \to 5^{-}} \sqrt{25 - x^{2}} = 0 = h(5).
$$

So $h(x) = \sqrt{25 - x^{2}}$ is continuous on [-5,5].

b. $g(x) = (x^2 + 3x - 6)^{\frac{4}{7}}$ $\overline{\sigma}$; $m = 7$ is odd so $g(x)$ is continuous everywhere since $f(x) = x^2 + 3x - 6$ is continuous everywhere. So $g(x)$ is cont. on $(-\infty, \infty)$.

Earlier we used the squeeze theorem to show that:

 $\lim_{h \to 0} \sin(h) = 0$ and $\lim_{h \to 0}$ $\overline{h} \rightarrow 0$ $h\rightarrow 0$ $cos(h) = 1.$

Now we want to show that $sinx$ and $cosx$ are continuous functions for any $x = a$.

So we must show:

$$
\lim_{x\to a}\sin(x)=\sin(a)\quad\text{and}\quad\lim_{x\to a}\cos(x)=\cos(a)\,.
$$

To show lim $x \rightarrow a$ $sin(x) = sin(a)$ remember that $sin(a + h) = (sina)(cos(h)) + (sin(h))(cos(a)).$ If we let $x = a + h$ then lim $x \rightarrow a$ $sin(x) = lim$ $h\rightarrow 0$ $sin(a + h)$ $=$ \lim $h\rightarrow 0$ $[(\sin a)(\cos(h)) + (\sin(h))(\cos(a))]$ $=$ \lim $h\rightarrow 0$ $(\sin(a))(\cos(h)) + \lim_{h \to 0}$ $h\rightarrow 0$ $(\sin(h))(\cos(a))$ $= \sin(a) + 0 = \sin(a)$.

To show that $\cos x$ is continuous for any $x = a$ we do the same trick, but we use

$$
cos(a + h) = (cos(a))(cos(h)) - (sin(a))(sin(h)).
$$

Using the fact that if f and g are continuous at $x = a$, so is f/g as long as $g(a) \neq 0$, we can conclude:

The 6 trig functions are continuous at all points of their domains.

Ex. Evaluate
$$
\lim_{x \to \frac{\pi}{2}} \sqrt{\frac{4\sin^2 x - 4}{\sin x - 1}}
$$
.

$$
\lim_{x \to \frac{\pi}{2}} \sqrt{\frac{4\sin^2 x - 4}{\sin x - 1}} = \lim_{x \to \frac{\pi}{2}} \sqrt{\frac{4(\sin^2 x - 1)}{\sin x - 1}}
$$

$$
= \lim_{x \to \frac{\pi}{2}} 2\sqrt{\frac{(\sin x - 1)(\sin x + 1)}{\sin x - 1}}
$$

$$
= \lim_{x \to \frac{\pi}{2}} 2\sqrt{\sin x + 1} = 2\sqrt{1 + 1} = 2\sqrt{2}.
$$

The Intermediate Value Theorem

Frequently, we want to know if there is a solution to the problem $f(x) = K$. That is, is there a real number x_0 such that $f(x_0) = K$?

The Intermediate Value Theorem is a common way to show that an equation has a solution (without necessarily finding it).

Intermediate Value Theorem: Suppose f is continuous on the interval $[a, b]$ and K is a number strictly between $f(a)$ and $f(b)$. Then there exists at least one number *c* in (a, b) such that $f(c) = K$.

Ex. Show that the equation $sinx + x = 1$ has at least one solution on $(0, \frac{\pi}{2})$ $\frac{\pi}{2}$).

Let
$$
f(x) = \sin x + x - 1
$$
.
\n $f(x)$ is a continuous function on $[0, \frac{\pi}{2}]$ and
\n $f(0) = -1$, $f(\frac{\pi}{2}) = \sin \frac{\pi}{2} + \frac{\pi}{2} - 1 = \frac{\pi}{2}$.
\nSince $f(0) < 0$ and $f(\frac{\pi}{2}) > 0$,
\nby the intermediate value theorem there must be at least one point *c*,
\nwhere $0 < c < \frac{\pi}{2}$ such that $f(c) = 0$. That *c* is a solution of

 $sin x + x = 1.$

Ex. Show that $\sqrt[3]{x+2}-x=3$ has at least one solution in $[-10.6].$

Let
$$
f(x) = \sqrt[3]{x+2} - x - 3
$$
.

Notice that $f(x)$ is continuous everywhere because $g(x) = \sqrt[3]{x+2}$ and $h(x) = -x - 3$ are both continuous everywhere. So, in particular, $f(x)$ is continuous on $[-10,6]$.

$$
f(-10) = \sqrt[3]{-8} + 10 - 3 = -2 + 10 - 3 = 5 > 0
$$
\n
$$
f(6) = \sqrt[3]{8} - 6 - 3 = 2 - 6 - 3 = -7 < 0.
$$

So by the intermediate value theorem there must be at least one point c , where $-10 < c < 6$ such that $f(c) = 0$. That *c* is a solution of $\sqrt[3]{x+2} - x = 3$.