Limits at infinity occur when x (or the independent variable) becomes very large in magnitude. These limits determine the **end behavior** of a function.

Informal definition: $\lim_{x\to\infty} f(x) = L$ means as x goes toward ∞ the value of f(x) goes toward L.

Similarly, $\lim_{x\to-\infty} f(x) = L$ means as x goes toward $-\infty$ the value of f(x) goes toward L.

Def. If $\lim_{x\to\infty} f(x) = L$ or $\lim_{x\to-\infty} f(x) = L$ the line y = L is called a **horizontal** asymptote for the graph of the function y = f(x).

Ex. For any positive integer m, $y = \frac{1}{x^m}$ has a horizontal asymptote at y = 0since as x goes to either ∞ or $-\infty$, $\frac{1}{x^m}$ goes toward 0 (i.e. $\lim_{x \to \infty} \frac{1}{x^m} = 0$ and $\lim_{x \to -\infty} \frac{1}{x^m} = 0$).

If *m* is any positive real number then $\lim_{x \to \infty} \frac{1}{x^m} = 0$. $\lim_{x \to -\infty} \frac{1}{x^m}$ may or may not exist. For example, $\lim_{x \to -\infty} \frac{1}{x^{\frac{1}{2}}} = \lim_{x \to -\infty} \frac{1}{\sqrt{x}}$ doesn't exist since $\frac{1}{\sqrt{x}}$ is not defined for x < 0.

- Ex. Evaluate the following limits:
 - a. $\lim_{x \to -\infty} (4 \frac{3}{x^2})$ b. $\lim_{x \to \infty} (3 + \frac{\cos x}{\sqrt{x}})$
 - a. By our limits laws:

$$\lim_{x \to -\infty} (4 - \frac{3}{x^2}) = \lim_{x \to -\infty} 4 - \lim_{x \to -\infty} \frac{3}{x^2}$$
$$= \lim_{x \to -\infty} 4 - (3) (\lim_{x \to -\infty} \frac{1}{x^2}) = 4 - 3(0) = 4.$$

b. Notice that $-1 \le cosx \le 1$ for all real numbers x so $\frac{-1}{\sqrt{x}} \le \frac{cosx}{\sqrt{x}} \le \frac{1}{\sqrt{x}}$; for x > 0.

By the squeeze theorem since $\lim_{x \to \infty} \frac{-1}{\sqrt{x}} = 0$ and $\lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0$, $\Rightarrow \lim_{x \to \infty} \frac{\cos x}{\sqrt{x}} = 0$.

Thus $\lim_{x \to \infty} (3 + \frac{\cos x}{\sqrt{x}}) = \lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{\cos x}{\sqrt{x}} = 3 + 0 = 3.$

Infinite Limits at infinity

Informal definition: If f(x) becomes arbitrarily large as x becomes arbitrarily large, then we write $\lim_{x \to \infty} f(x) = \infty$. $\lim_{x \to \infty} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = \infty$, and $\lim_{x \to -\infty} f(x) = -\infty$ are defined analogously.

- Ex. $\lim_{x \to \infty} x^3 = \infty$, $\lim_{x \to -\infty} x^3 = -\infty$ $\lim_{x \to \infty} x^2 = \infty$, $\lim_{x \to -\infty} x^2 = \infty$.
- In fact: $\lim_{x \to \infty} x^n = \infty$, $\lim_{x \to -\infty} x^n = -\infty$, if *n* is a positive odd number $\lim_{x \to \infty} x^n = \infty$, $\lim_{x \to -\infty} x^n = \infty$, if *n* is a positive even number.

The end behavior of a polynomial is determined by whether the degree of the highest power is odd or even AND the sign of the coefficient of that term.

$$p(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

= $x^n (b_n + \frac{b_{n-1}}{x} + \dots + \frac{b_1}{x^{n-1}} + \frac{b_0}{x^n})$

As x goes to $\pm \infty$ all of the terms in the parentheses go to 0 except the first one. So as x goes to $\pm \infty$, p(x) has end behavior of $b_n x^n$.

Ex. Find
$$\lim_{x \to \infty} (-4x^{15} + 100x^{14} - 3x^7 + 3)$$
 and $\lim_{x \to -\infty} (-4x^{15} + 100x^{14} - 3x^7 + 3).$

$$\lim_{x \to \infty} (-4x^{15} + 100x^{14} - 3x^7 + 3) = \lim_{x \to \infty} (-4x^{15}) = -\infty$$

since $\lim_{x \to \infty} x^{15} = \infty$.

$$\lim_{x \to -\infty} (-4x^{15} + 100x^{14} - 3x^7 + 3) = \lim_{x \to -\infty} (-4x^{15}) = \infty$$

since $\lim_{x \to -\infty} x^{15} = -\infty$.

End Behavior of Rational Functions and Algebraic Functions To determine the end behavior of a rational function $\frac{p(x)}{q(x)}$, divide the numerator and the denominator by the highest power in the denominator.

Ex. Determine the end behavior of:

a.
$$\frac{3x^{-1}}{2x^3 + x}$$

b. $\frac{-2x^4 + x^2 + 3}{-2x^3 + x - 1}$

3r-1

C.
$$\frac{10x^4 + 3x - 2}{-2x^4 + x^2 - 1}$$

a.
$$\frac{3x-1}{2x^3+x} = \frac{x^3(\frac{3}{x^2} - \frac{1}{x^3})}{x^3(2 + \frac{1}{x^2})} = \frac{(\frac{3}{x^2} - \frac{1}{x^3})}{(2 + \frac{1}{x^2})};$$
 so

$$\lim_{x \to \infty} \frac{3x-1}{2x^3 + x} = \lim_{x \to \infty} \frac{\left(\frac{3}{x^2} - \frac{1}{x^3}\right)}{\left(2 + \frac{1}{x^2}\right)} = \frac{0-0}{2+0} = \frac{0}{2} = 0$$

$$\lim_{x \to -\infty} \frac{3x-1}{2x^3 + x} = \lim_{x \to -\infty} \frac{\left(\frac{3}{x^2} - \frac{1}{x^3}\right)}{\left(2 + \frac{1}{x^2}\right)} = \frac{0-0}{2+0} = \frac{0}{2} = 0.$$

So y = 0 is a horizontal asymptote for this function.

b.
$$\frac{-2x^4 + x^2 + 3}{-2x^3 + x - 1} = \frac{x^3(-2x + \frac{1}{x} + \frac{3}{x^3})}{x^3(-2 + \frac{1}{x^2} - \frac{1}{x^3})} = \frac{(-2x + \frac{1}{x} + \frac{3}{x^3})}{(-2 + \frac{1}{x^2} - \frac{1}{x^3})};$$
 so

$$\lim_{x \to \infty} \frac{-2x^4 + x^2 + 3}{-2x^3 + x - 1} = \lim_{x \to \infty} \frac{(-2x + \frac{1}{x} + \frac{3}{x^3})}{(-2 + \frac{1}{x^2} - \frac{1}{x^3})} = \lim_{x \to \infty} \frac{-2x}{-2} = \lim_{x \to \infty} x = \infty.$$

$$\lim_{x \to -\infty} \frac{-2x^4 + x^2 + 3}{-2x^3 + x - 1} = \lim_{x \to -\infty} \frac{(-2x + \frac{1}{x} + \frac{3}{x^3})}{(-2 + \frac{1}{x^2} - \frac{1}{x^3})} = \lim_{x \to -\infty} \frac{-2x}{-2}$$
$$= \lim_{x \to -\infty} x = -\infty$$

So no horizontal asymptotes for this function.

c.
$$\frac{10x^4 + 3x - 2}{-2x^4 + x^2 - 1} = \frac{x^4(10 + \frac{3}{x^3} - \frac{2}{x^4})}{x^4(-2 + \frac{1}{x^2} - \frac{1}{x^4})} = \frac{(10 + \frac{3}{x^3} - \frac{2}{x^4})}{(-2 + \frac{1}{x^2} - \frac{1}{x^4})};$$
 so

$$\lim_{x \to \infty} \frac{10x^4 + 3x - 2}{-2x^4 + x^2 - 1} = \lim_{x \to \infty} \frac{(10 + \frac{3}{x^3} - \frac{2}{x^4})}{(-2 + \frac{1}{x^2} - \frac{1}{x^4})} = \frac{10}{-2} = -5.$$

So y = -5 is a horizontal asymptote for this function.

Summary of End Behavior and Asymptotes of Rational Functions:

If $f(x) = \frac{p(x)}{q(x)}$, where p(x) is a polynomial of degree r and q(x) is a polynomial of degree s where:

$$p(x) = c_r x^r + c_{r-1} x^{r-1} + \dots + c_1 x + c_0; \qquad c_r \neq 0$$

$$q(x) = d_s x^s + d_{s-1} x^{s-1} + \dots + d_1 x + d_0; \qquad d_s \neq 0.$$

- 1. If the degree of the numerator is less than the degree of the denominator, r < s, then $\lim_{x \to \pm \infty} f(x) = 0$ and y = 0 is a horizontal asymptote of f(x).
- 2. If the degree of the numerator equals the degree of the denominator, r = s, then $\lim_{x \to \pm \infty} f(x) = \frac{c_r}{d_s}$ and $y = \frac{c_r}{d_s}$ is a horizontal asymptote of f(x).
- 3. If the degree of the numerator is greater than the degree of the denominator, r > s, then $\lim_{x \to \pm \infty} f(x) = \infty$ or $-\infty$, and f(x) has no horizontal asymptote.
- 4. Assuming f(x) is in reduced form, vertical asymptotes occur at the zeros of q(x).

End Behavior for Algebraic Functions

Ex. Evaluate:
$$\lim_{x \to \pm \infty} \frac{6x+1}{\sqrt{4x^2+3x+5}}$$

The highest power in the denominator is $\sqrt{x^2} = x$ when x is positive:

$$\lim_{x \to \infty} \frac{6x+1}{\sqrt{4x^2+3x+5}} = \lim_{x \to \infty} \frac{x(6+\frac{1}{x})}{\sqrt{x^2(4+\frac{3}{x}+\frac{5}{x^2})}}$$
$$= \lim_{x \to \infty} \frac{x(6+\frac{1}{x})}{\sqrt{x^2}\sqrt{4+\frac{3}{x}+\frac{5}{x^2}}}$$
$$= \lim_{x \to \infty} \frac{x(6+\frac{1}{x})}{x\sqrt{4+\frac{3}{x}+\frac{5}{x^2}}}$$
$$= \lim_{x \to \infty} \frac{6+\frac{1}{x}}{\sqrt{4+\frac{3}{x}+\frac{5}{x^2}}}$$
$$= \frac{6}{\sqrt{4}} = 3.$$

When x is negative $\sqrt{x^2} = -x$:

$$\lim_{x \to -\infty} \frac{6x+1}{\sqrt{4x^2+3x+5}} = \lim_{x \to -\infty} \frac{x(6+\frac{1}{x})}{\sqrt{x^2(4+\frac{3}{x}+\frac{5}{x^2})}}$$
$$= \lim_{x \to -\infty} \frac{x(6+\frac{1}{x})}{\sqrt{x^2}\sqrt{4+\frac{3}{x}+\frac{5}{x^2}}}$$

$$= \lim_{x \to -\infty} \frac{x(6 + \frac{1}{x})}{-x\sqrt{4 + \frac{3}{x} + \frac{5}{x^2}}}; \quad \sqrt{x^2} = -x \text{ since } x < 0.$$

$$= \lim_{x \to -\infty} -\frac{6 + \frac{1}{x}}{\sqrt{4 + \frac{3}{x} + \frac{5}{x^2}}}$$

$$= -\frac{6}{\sqrt{4}} = -3.$$

Ex. Determine the end behavior of $f(x) = \frac{\sqrt{x^6+2}}{3x^3+2x}$.

As with rational functions we want to divide the numerator and the denominator by the "highest power" in the denominator. However, since there is a square root in the numerator we have to be careful. The highest power in the numerator is actually $\sqrt{x^6} = x^3$ if x > 0 and $\sqrt{x^6} = -x^3$ if x < 0. Either way, the "highest power" in the numerator is 3, the same as the denominator. For x > 0, $\sqrt{x^6} = x^3$,

$$\lim_{x \to \infty} \frac{\sqrt{x^6 + 2}}{3x^3 + 2x} = \lim_{x \to \infty} \frac{\sqrt{x^6 (1 + \frac{2}{x^6})}}{x^3 (3 + \frac{1}{x^2})} = \lim_{x \to \infty} \frac{\sqrt{x^6} \sqrt{(1 + \frac{2}{x^6})}}{x^3 (3 + \frac{1}{x^2})}$$
$$= \lim_{x \to \infty} \frac{x^3 \sqrt{(1 + \frac{2}{x^6})}}{x^3 (3 + \frac{1}{x^2})} = \lim_{x \to \infty} \frac{\sqrt{(1 + \frac{2}{x^6})}}{(3 + \frac{1}{x^2})} = \frac{1}{3}$$

For x < 0, $\sqrt{x^6} = -x^3$, $\lim_{x \to -\infty} \frac{\sqrt{x^6 + 2}}{3x^3 + 2x} = \lim_{x \to -\infty} \frac{\sqrt{x^6(1 + \frac{2}{x^6})}}{x^3(3 + \frac{1}{x^2})} = \lim_{x \to -\infty} \frac{\sqrt{x^6}\sqrt{(1 + \frac{2}{x^6})}}{x^3(3 + \frac{1}{x^2})}$ $= \lim_{x \to -\infty} \frac{-x^3\sqrt{(1 + \frac{2}{x^6})}}{x^3(3 + \frac{1}{x^2})} = \lim_{x \to -\infty} \frac{-\sqrt{(1 + \frac{2}{x^6})}}{(3 + \frac{1}{x^2})} = \frac{-1}{3}.$

So $y = \frac{1}{3}$ is a horizontal asymptote and $y = -\frac{1}{3}$ is a horizontal asymptote.

Note: If the highest power under the square root was a multiple of 4, like x^8 , we wouldn't have had to worry about the sign of the radical because for any value of x, $\sqrt{x^8} = x^4$.

End Behavior of *sinx* and *cosx*

sinx and cosx oscillate so $\lim_{x \to \pm \infty} sinx$ and $\lim_{x \to \pm \infty} cosx$ do not exist.