Infinite Limits

There are 2 types of limits that involve infinity that come up frequently.

- An Infinite Limit- The value of a function increases or decreases without bound as *x* approaches a finite point *a*.
- 2. Limit at Infinity- finding a limit when x (or the independent variable) increases or decreases without bound (discussed in the next section)

Ex. An Infinite Limit. Let $f(x) = \frac{1}{x^2}$. $\lim_{x \to 0} f(x) = \infty$.

Ex. Let $f(x) = \frac{1}{x}$, Find $\lim_{x \to 0} f(x)$, if it exists. Start by graphing $f(x) = \frac{1}{x}$.

 $\lim_{x \to 0} f(x) = \text{Does Not Exist (DNE)},$ Because f(x) approaches $+\infty$ from the right and $-\infty$ from the left.

Def. Suppose f(x) is defined for all x near x = a. If f(x) grows arbitrarily large for all x sufficiently close (but not equal) to a, we write $\lim_{x \to a} f(x) = \infty$ and say that the limit of f(x) as x approaches a is infinity.

If f(x) is negative and grows arbitrarily large in magnitude for all x sufficiently close (but not equal) to a, we write $\lim_{x \to a} f(x) = -\infty$ and say that the limit of f(x) as x approaches a is negative infinity.

One-Sided Limits

Def. Suppose f is defined for all x near a with x > a. If f(x) becomes arbitrarily large for all x sufficiently close to a with x > a, we write $\lim_{x \to a^+} f(x) = \infty$. If f(x) is negative and grows arbitrarily large in magnitude for all x sufficiently close to a with x > a, we write $\lim_{x \to a^+} f(x) = -\infty$.

Suppose f is defined for all x near a with x < a. If f(x) becomes arbitrarily large for all x sufficiently close to a with x < a, we write $\lim_{x \to a^-} f(x) = \infty$.

If f(x) is negative and grows arbitrarily large in magnitude for all x sufficiently close to a with x < a, we write $\lim_{x \to a^-} f(x) = -\infty$.

Def. If
$$\lim_{x \to a} f(x) = \pm \infty$$
, $\lim_{x \to a^+} f(x) = \pm \infty$, or
 $\lim_{x \to a^-} f(x) = \pm \infty$, the line $x = a$ is called a **vertical asymptote**.

Ex. find $\lim_{x \to 3^{-}} \frac{2x}{x-3}$, $\lim_{x \to 3^{+}} \frac{2x}{x-3}$, and $\lim_{x \to 3} \frac{2x}{x-3}$ if they exist. Find any vertical asymptotes.

Notice that as x goes toward x = 3, $\frac{2x}{x-3}$ is going to go toward either $\pm \infty$ (why?). The only question is as x approaches 3 from the left or the right, is the function approaching ∞ or $-\infty$?

To answer this we just need to know the sign of $\frac{2x}{x-3}$ as we approach x = 3 from either side.

Notice when x is slightly larger than 3, 2x is a positive number, and x - 3 is a positive number. Thus for x slightly larger than 3 (ie, we approach 3 from the right) $\frac{2x}{x-3}$ is a ratio of positive numbers and hence positive. Thus

$$\lim_{x \to 3^+} \frac{2x}{x-3} = \infty.$$

When x is slightly smaller than 3, 2x is still positive, but x - 3 is negative. Thus $\frac{2x}{x-3}$ is a ratio of a positive number and a negative number and hence negative. Thus $\lim_{x\to 3^-} \frac{2x}{x-3} = -\infty$. Since $\lim_{x\to 3^+} \frac{2x}{x-3} = \infty$ (or we could have used $\lim_{x\to 3^-} \frac{2x}{x-3} = -\infty$), x = 3 is a vertical asymptote for the graph of $f(x) = \frac{2x}{x-3}$

since $\lim_{x \to 3^-} \frac{2x}{x-3} \neq \lim_{x \to 3^+} \frac{2x}{x-3}$, $\lim_{x \to 3} \frac{2x}{x-3}$ does not exist.

Ex. Find
$$\lim_{x \to 1^{-}} \frac{(2-x)(x+1)}{(x-1)^2}$$
, $\lim_{x \to 1^{+}} \frac{(2-x)(x+1)}{(x-1)^2}$, and $\lim_{x \to 1} \frac{(2-x)(x+1)}{(x-1)^2}$ if

they exist. Find any vertical asymptotes.

If a rational function is not already factored (this one is), factor it.

Notice as x goes toward x = 1, $\frac{(2-x)(x+1)}{(x-1)^2}$ is going to go toward either $\pm \infty$.

If x is slightly larger than 1, then 2 - x is positive , x + 1 is positive , and $(x - 1)^2$ is positive .

Hence
$$\frac{(2-x)(x+1)}{(x-1)^2}$$
 is positive.

So
$$\lim_{x \to 1^+} \frac{(2-x)(x+1)}{(x-1)^2} = +\infty.$$

If x is slightly smaller than 1, then 2 - x is positive, x + 1 is positive, and $(x - 1)^2$ is positive.

Hence
$$\frac{(2-x)(x+1)}{(x-1)^2}$$
 is positive.

So
$$\lim_{x \to 1^{-}} \frac{(2-x)(x+1)}{(x-1)^2} = +\infty$$

Thus $\lim_{x \to 1} \frac{(2-x)(x+1)}{(x-1)^2} = +\infty$

The graph of $f(x) = \frac{(2-x)(x+1)}{(x-1)^2}$ has a vertical asymptote at x = 1.

Ex. Find all vertical asymptotes of $f(x) = \frac{x^2 - 5x + 6}{x^2 - x - 6}$. Evaluate $\lim_{x \to -2^+} f(x)$, $\lim_{x \to -2^-} f(x)$, and $\lim_{x \to -2} f(x)$ if they exist.

$$f(x) = \frac{x^2 - 5x + 6}{x^2 - x - 6} = \frac{(x - 3)(x - 2)}{(x - 3)(x + 2)} = \frac{x - 2}{x + 2}; \quad \text{if } x \neq -2,3.$$

For x slightly larger than -2, x - 2 is negative, x + 2 is positive.

So
$$\frac{x-2}{x+2}$$
 is negative.
Thus $\lim_{x \to -2^+} f(x) = -\infty$.

For x slightly smaller than -2, x - 2 is negative, x + 2 is negative.

Thus
$$\frac{x-2}{x+2}$$
 is positive and $\lim_{x \to -2^-} f(x) = +\infty$.

$$\lim_{x \to -2} f(x) = \text{DNE because } \lim_{x \to -2^+} f(x) \neq \lim_{x \to -2^-} f(x).$$

$$f(x) = \frac{x^2 - 5x + 6}{x^2 - x - 6}$$
 has a vertical asymptote at $x = -2$.

Does f(x) have an asymptote at x = 3? NO, since $\lim_{x \to 3} f(x) = \frac{1}{5}$.

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \frac{(x-3)(x-2)}{(x-3)(x+2)} = \lim_{x \to 3^+} \frac{x-2}{x+2} = \frac{1}{5} = \lim_{x \to 3^-} \frac{x-2}{x+2}$$

Limits of Trig Functions

Ex. Find $\lim_{x\to 0^+} cotx$ and $\lim_{x\to 0^-} cotx$. $cotx = \frac{cosx}{sinx}$ so cotx goes to either $\pm \infty$ as x goes to zero because as x goes to zero *sinx* goes to 0 and *cosx* doesn't go to zero.

For x slightly larger than 0, cosx is positive, sinx is positive, so cotx is positive.

Hence
$$\lim_{x \to 0^+} cotx = +\infty$$

For x slightly smaller than 0, cosx is positive, sinx is negative, so cotx is negative.

Hence $\lim_{x \to 0^-} cotx = -\infty$.

(or $\lim_{x\to 0^-} cotx = -\infty$).