Calculating Limits

lim $x \rightarrow a$ $f(x) = c$ where $f(x) = c$ is a constant function.

Ex. Find
$$
\lim_{x \to 2} 9
$$
, $\lim_{x \to -3} (-2x + 4)$.
\n $\lim_{x \to 2} 9 = 9$ since $f(x) = 9$ is a constant function.
\n $\lim_{x \to 2} (-2x + 4) = -2(-3) + 4 = 10$.

 $x \rightarrow -3$

Limit Laws: Suppose lim $x \rightarrow a$ $f(x)$ and \lim $x \rightarrow a$ $g(x)$ exist. Then the following relationships hold, where c is a real number, and m, n are positive integers.

1. Sum: lim $x \rightarrow a$ $(f(x) + g(x)) = \lim$ $x \rightarrow a$ $f(x)$ + lim $x \rightarrow a$ $g(x)$ 2. Difference: lim $x \rightarrow a$ $(f(x) - g(x)) = \lim$ $x \rightarrow a$ $f(x) - \lim$ $x \rightarrow a$ $g(x)$ 3. Constant Multiple: lim $x \rightarrow a$ $(c f(x)) = c$ lim $x \rightarrow a$ $f(x)$ 4. Product: lim $x \rightarrow a$ $(f(x)g(x)) = (lim$ $x \rightarrow a$ $f(x))$ (lim $x \rightarrow a$ $g(x)$ 5. Quotient: lim $x \rightarrow a$ $\int \frac{f(x)}{g(x)}$ $\frac{f(x)}{g(x)}$ = $\lim_{x\to a} f(x)$ $\lim_{x\to a} g(x)$, as long as lim $x \rightarrow a$ $g(x) \neq 0$ 6. Power: lim $x \rightarrow a$ $(f(x))^n = (\lim$ $x \rightarrow a$ $f(x)$ ⁿ 7. Fractional Power: lim $x \rightarrow a$ $(f(x))$ \boldsymbol{n} $\overline{m} = (lim$ $x \rightarrow a$ $f(x)$ \boldsymbol{n} m ; provided $f(x) > 0$, for x near a, if m is even and n/m is reduced to lowest form.

Ex. Evaluate
$$
\lim_{x \to 3} (2x^2 - x + 4)
$$
.
\n
$$
\lim_{x \to 3} (2x^2 - x + 4) = \lim_{x \to 3} 2x^2 - \lim_{x \to 3} x + \lim_{x \to 3} 4
$$
 (by laws 1 and 2)
\n
$$
= 2 \lim_{x \to 3} x^2 - \lim_{x \to 3} x + \lim_{x \to 3} 4
$$
 (by law 3)
\n
$$
= 2(\lim_{x \to 3} x)^2 - \lim_{x \to 3} x + \lim_{x \to 3} 4
$$
 (by law 6)
\n
$$
= 2(3)^2 - 3 + 4 = 18 - 3 + 4 = 19.
$$

Ex. Evaluate
$$
\lim_{x \to 2} (x^3 - 4x^2 + 1)
$$
.

$$
\lim_{x \to 2} (x^3 - 4x^2 + 1) = \lim_{x \to 2} x^3 - \lim_{x \to 2} 4x^2 + \lim_{x \to 2} 1
$$
 (by laws 1 and 2)
= $(\lim_{x \to 2} x)^3 - 4(\lim_{x \to 2} x)^2 + \lim_{x \to 2} 1$ (by laws 3 and 6)
= $2^3 - 4(2)^2 + 1 = -7$.

Ex. Evaluate
$$
\lim_{x \to -3} \left(\frac{x^2 - 2x - 6}{2 - 3x} \right)
$$

\n
$$
\lim_{x \to -3} \left(\frac{x^2 - 2x - 6}{2 - 3x} \right) = \frac{\lim_{x \to -3} (x^2 - 2x - 6)}{\lim_{x \to -3} (2 - 3x)}
$$
 (by law 5)
\n
$$
= \frac{\lim_{x \to -3} x^2 - \lim_{x \to -3} 2x - \lim_{x \to -3} 6}{\lim_{x \to -3} 2 - \lim_{x \to -3} 3x}
$$
 (by laws 1 and 2)
\n
$$
= \frac{(\lim_{x \to -3} x)^2 - 2 \lim_{x \to -3} x - \lim_{x \to -3} 6}{\lim_{x \to -3} 2 - 3 \lim_{x \to -3} x}
$$
 (by laws 3 and 6)
\n
$$
= \frac{(-3)^2 - 2(-3) - 6}{2 - 3(-3)} = \frac{9 + 6 - 6}{2 + 9} = \frac{9}{11}.
$$

Notice that for any polynomial or rational function (i.e., $p(x)$ $\frac{p(x)}{q(x)}$; where $p(x)$, $q(x)$ are polynomials) where a is in the domain of $f(x)$ we have:

$$
\lim_{x\to a}f(x)=f(a).
$$

That is, to evaluate the limit (in this case) you can just plug the value of a into the function.

Ex. Evaluate $b\rightarrow 3$ $\left(\frac{\sqrt{2b^2-9}-2b+2}{4b} \right)$ $\frac{-9-2b+2}{4b-6}$).

$$
\lim_{b \to 3} \left(\frac{\sqrt{2b^2 - 9} - 2b + 2}{4b - 6} \right) = \frac{\lim_{b \to 3} (\sqrt{2b^2 - 9} - 2b + 2)}{\lim_{b \to 3} (4b - 6)} \tag{law 5}
$$

$$
= \frac{\lim_{b \to 3} (\sqrt{2b^2 - 9}) - \lim_{b \to 3} 2b + \lim_{b \to 3} 2}{\lim_{b \to 3} 4b - \lim_{b \to 3} 6}
$$
 (laws 1 and 2)

$$
= \frac{\sqrt{\lim_{b \to 3} (2b^2 - 9) - 2 \lim_{b \to 3} b + \lim_{b \to 3} 2}}{4 \lim_{b \to 3} b - \lim_{b \to 3} 6}
$$
 (laws 3 and 6)

$$
=\frac{\sqrt{\lim_{b\to 3}(2b^2)-\lim_{b\to 3}9-2(3)+2}}{4(3)-6}
$$
 (law 2)

$$
= \frac{\sqrt{2 (\lim b)^2 - \lim_{b \to 3} 9 - 4}}{6}
$$
 (laws 3 and 6)

$$
=\frac{\sqrt{2(3)^2-9}-4}{6}=\frac{\sqrt{9}-4}{6}=-\frac{1}{6}.
$$

One-Sided Limits

Limit laws 1-6 also hold for one-sided limits. For example:

$$
\lim_{x\to a^+}(f(x)g(x))=(\lim_{x\to a^+}f(x))(\lim_{x\to a^+}g(x)).
$$

However law #7 must be modified as follows. Assume $m, n > 0$ are integers.

 lim $x \rightarrow a^+$ $(f(x))$ \boldsymbol{n} $\overline{m} = ($ lim $x \rightarrow a^+$ $f(x)$ \boldsymbol{n} $\overline{^m}$; provided $f(x)\geq 0$, for x near a with $x > a$, if m is even and n/m is reduced to lowest form.

lim $x \rightarrow a^ (f(x))$ \boldsymbol{n} $\overline{m} = ($ lim $\overline{x \rightarrow a}$ $f(x)$ \boldsymbol{n} \overline{m} ; provided $f(x) \geq 0$, for x near a with $x < a$, if m is even and n/m is reduced to lowest form.

Ex. Calculate
$$
\lim_{x \to 1^+} f(x)
$$
, $\lim_{x \to 1^-} f(x)$, $\lim_{x \to 1} f(x)$ if they exist if
\n
$$
f(x) = x\sqrt{x - 1}
$$
 if $1 \le x$
\n
$$
= x\sqrt{2 - x}
$$
 if $-1 \le x < 1$.

Start by sketching the graph of $f(x)$.

$$
\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x\sqrt{x - 1}) = 0
$$
\n
$$
\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x\sqrt{2 - x}) = 1
$$
\n
$$
\lim_{x \to 1} f(x) = DNE, \text{ since}
$$
\n
$$
\lim_{x \to 1^{+}} f(x) \neq \lim_{x \to 1^{-}} f(x).
$$

Indeterminate Forms

$$
\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = 0, \text{ if } \lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) \neq 0, \text{ but exists.}
$$
\n
$$
\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \text{DNE, if } \lim_{x \to a} f(x) \neq 0, \text{ but exists and } \lim_{x \to a} g(x) = 0.
$$
\n
$$
\text{However, if } \lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = 0, \text{ then } \lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) \text{ is called an}
$$
\n
$$
\text{indeterminate form and could equal any number or not exist, depending on the}
$$
\n
$$
\text{example. Two common techniques for evaluating indeterminate forms are factoring}
$$
\n
$$
\text{and multiplying by conjugates (when a square root is involved)}.
$$

Ex. Evaluate
$$
\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 2x}
$$
.

$$
\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 2x} = \lim_{x \to 2} \frac{(x - 2)(x + 3)}{x(x - 2)}
$$

$$
= \lim_{x \to 2} \frac{(x + 3)}{x} = \frac{5}{2}.
$$

Ex. Evaluate
$$
\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}.
$$

$$
\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{(9+6h+h^2) - 9}{h}
$$

$$
= \lim_{h \to 0} \frac{6h+h^2}{h} = \lim_{h \to 0} \frac{h(6+h)}{h}
$$

$$
= \lim_{h \to 0} (6+h) = 6.
$$

Ex. Evaluate
$$
\lim_{t \to 0} \frac{\sqrt{t^2 + 16} - 4}{t^2}
$$
.

$$
\lim_{t \to 0} \frac{\sqrt{t^2 + 16} - 4}{t^2} = \lim_{t \to 0} \left(\frac{\sqrt{t^2 + 16} - 4}{t^2} \right) \left(\frac{\sqrt{t^2 + 16} + 4}{\sqrt{t^2 + 16} + 4} \right)
$$
\n
$$
= \lim_{t \to 0} \frac{t^2 + 16 - 16}{t^2(\sqrt{t^2 + 16} + 4)}
$$
\n
$$
= \lim_{t \to 0} \frac{t^2}{t^2(\sqrt{t^2 + 16} + 4)}
$$
\n
$$
= \lim_{t \to 0} \frac{1}{\sqrt{t^2 + 16} + 4} = \frac{1}{8}.
$$

Ex. Evaluate
$$
\lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4}
$$
.

$$
\lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4} = \lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4} \left(\frac{\sqrt{x+5}+3}{\sqrt{x+5}+3}\right)
$$

$$
= \lim_{x \to 4} \frac{x+5-9}{(x-4)(\sqrt{x+5}+3)}
$$

$$
= \lim_{x \to 4} \frac{x-4}{(x-4)(\sqrt{x+5}+3)}
$$

$$
= \lim_{x \to 4} \frac{1}{(\sqrt{x+5}+3)} = \frac{1}{\sqrt{9}+3} = \frac{1}{6}
$$

.

The Squeeze Theorem: Assume the functions f , g , h satisfy

 $f(x) \leq g(x) \leq h(x)$ for all values of x near $x = a$ except possibly at $x = a$. If lim $x \rightarrow a$ $f(x) = L$, lim $x \rightarrow a$ $h(x) = L$, then \lim $x \rightarrow a$ $g(x) = L$. (Note: This theorem is still true if $a = \pm \infty$).

Ex. Sine and Cosine limits. It can be shown that for $-\frac{\pi}{2}$ $\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ $\frac{12}{2}$

 $-|x| \leq \sin x \leq |x|$ and $0 \leq 1 - \cos x \leq |x|$.

Using the Squeeze theorem show that:

- a. lim $x\rightarrow 0$ $sin x = 0$
- b. lim $x\rightarrow 0$ $cos x = 1.$

a. Using the first inequality, let $f(x) = -|x|$, $g(x) = sinx$, $h(x) = |x|$. Then lim $x\rightarrow 0$ $f(x) = \lim_{h \to 0}$ $x\rightarrow 0$ $-|x| = 0$, lim $x\rightarrow 0$ $h(x) = \lim_{h \to 0}$ $x\rightarrow 0$ $|x| = 0,$ so by the squeeze theorem $\lim_{x\to 0} g(x) = \lim_{x\to 0} sin x = 0.$

b. Using the second inequality, let $f(x) = 0$, $g(x) = 1 - \cos x$, $h(x) = |x|.$ Then lim $x\rightarrow 0$ $f(x) = \lim_{h \to 0}$ $x\rightarrow 0$ $0 = 0$, \lim $x\rightarrow 0$ $h(x) = \lim_{h \to 0}$ $x\rightarrow 0$ $|x| = 0,$ so by the squeeze theorem \lim_{Ω} $x\rightarrow 0$ $g(x) = \lim_{h \to 0}$ $x\rightarrow 0$ $(1 - \cos x) = 0$. Using our limit laws: lim $x\rightarrow 0$ $(1 - cos x) = \lim$ $x\rightarrow 0$ $1 - \lim$ $x\rightarrow 0$ $cos x = 0$, So lim $x\rightarrow 0$ $cos x = 1.$

Ex. Using the Squeeze theorem show that
$$
\lim_{x\to 0} x^2 \cos\left(\frac{1}{x}\right) = 0
$$
.

Notice that for all real numbers t we have: $-1 \leq cost \leq 1$.

So for any $x \neq 0$ we have $-1 \leq \cos(\frac{1}{x})$ $(\frac{1}{x}) \leq 1.$

Now multiply this inequality by x^2 (which we can do because $x^2 \geq 0$)

$$
-x^2 \le x^2 \cos\left(\frac{1}{x}\right) \le x^2.
$$

Now let $f(x) = -x^2$, $g(x) = x^2 \cos \left(\frac{1}{x}\right)$ $\frac{1}{x}$, $h(x) = x^2$.

$$
\lim_{x \to 0} f(x) = \lim_{x \to 0} -x^2 = 0, \quad \lim_{x \to 0} h(x) = \lim_{x \to 0} x^2 = 0,
$$

so by the squeeze theorem \lim_{Ω} $x\rightarrow 0$ $g(x) = \lim_{h \to 0}$ $x\rightarrow 0$ $x^2 \cos \left(\frac{1}{x}\right)$ $(\frac{1}{x}) = 0.$