Informal definition: $\lim_{x \to a} f(x) = L$; The limit as x goes to a of f(x) is L means as x tends toward a, f(x) tends toward L.

x	f(x)	x	f(x)
1	1	3	9
1.5	2.25	2.5	6.25
1.9	3.61	2.1	4.41
1.99	3.9601	2.01	4.0401
1.999	3.9960	2.001	4.0040

Notice that we don't care what the value of the function is at x = a, we only care what the value of the function is tending toward as x approaches a.

Ex. $f(x) = x^2$ if $x \neq 2$ = 8 if x = 2

Even though f(2) = 8, $\lim_{x \to 2} f(x) = 4$.

Ex. What is $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1}$?

Notice that $f(x) = \frac{x^2+2x-3}{x-1}$ is only defined for $x \neq 1$ (since the denominator can't be 0). So this function isn't even defined at the point where we want to take the limit (i.e., x = 1).

Notice also that when $x \neq 1$, $f(x) = \frac{x^2 + 2x - 3}{x - 1} = \frac{(x - 1)(x + 3)}{(x - 1)} = x + 3$, so we might expect that $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} (x + 3) = 4$.

x	f(x)	x	f(x)	5 ≜ y
.5	3.5	1.5	4.5	4-
.9	3.9	1.1	4.1	
.99	3.99	1.01	4.01	y = f(x)
.999	3.999	1.001	4.001	2-
.9999	3.999	1.0001	4.0001	

Ex. Suppose $g(x) = \frac{x^2 + 2x - 3}{x - 1}$ $x \neq 1$ = 2 x = 1What is $\lim_{x \to 1} g(x)$?

y = g(x)

0

2

-1

 $\lim_{x \to 1} g(x) = 4 \text{ ; but } g(1) = 2.$

Ways in which a function can fail to have a limit at x = a:

1. The function approaches different values from the right and the left

2. The function tends toward positive or negative infinity at x = a.

Ex.
$$g(x) = \frac{1}{(x-a)^2}$$
 $x \neq a$
 $\lim_{x \to a} g(x)$ does not exist.

Later we will talk about what it means to say $\lim_{x \to a} g(x) = \infty$ or $-\infty$.

3. The function "wiggles" up and down "too much"

One-sided Limits

Informal definition: We say $\lim_{x \to a^-} f(x) = L$, The limit of f(x) as x approaches a from the left is equal to L, if the values of f(x) tend to L as x approaches a from the left (ie from lower values of x).

We say $\lim_{x \to a^+} f(x) = L$, The limit of f(x) as x approaches a from the right is equal to L, if the values of f(x) tend to L as x approaches a from the right (ie from higher values of x).

For
$$\lim_{x \to a} f(x)$$
 to exist we must have $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$.

We just noted that $\lim_{x \to 2} f(x)$ does not exist, however $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (x - 2) = 1$ $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (x + 1) = 4.$

$\lim_{x \to -1^+} g(x) = -1$	$\lim_{x\to 1^+}g(x)=3$	$\lim_{x\to 2^+}g(x)=-2$
$\lim_{x \to -1^-} g(x) = 1$	$\lim_{x\to 1^-}g(x)=3$	$\lim_{x\to 2^-}g(x)=2$
$\lim_{x \to -1} g(x) = DNE$	$\lim_{x\to 1}g(x)=3$	$\lim_{x\to 2}g(x)=DNE$
g(-1) = -1	g(1) = 1	g(2) = -1.